

Supplement of

Warming temperatures are impacting the hydrometeorological regime of Russian rivers in the zone of continuous permafrost

Olga Makarieva et al.

Correspondence to: Olga Makarieva (o.makareva@spbu.ru, omakarieva@gmail.com)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

10 Tables S1 – S4 designations

The cells filled with grey color correspond to statistically significant trends with p<0.10. If any value is bold, it has significance p<0.05; if a value is in italics, it has significance 0.05 < p<0.10. In Tables 4 (precipitation) and 7-9 (streamflow) each cell with significant trend contains three numbers: 1) the value of total change for the whole period of observations in the characteristic unit (for example, mm) 2) percentage of total change (%); 3) where available – the year of change point or letter "m" for monotonical trend. If there is neither year, nor "m", the

- 15 Pettitt's test was not carried out due to too many gaps in the data. Statistically significant trend values are divided into 4 groups and marked with different colors accordingly: change points around 1966 red, 1970-1985 green, 1986-1995 violet, 1996 and later yellow. Monotonous trends and where change points were not available due to too many gaps in the data are in black. For streamflow, the year of change point marked with * indicates that the gauge has a long-term series of more than 70 years with change point in about 1966 and no significant trend after that period (last 50 years). In some cases, a second year of change point is given in brackets, as estimated with
- 20 Buishand range test.

Index	Period	1	2	3	4	5	6	7	8	9	10	11	12	Avg	*CPY
Yana River basin															
21931*	1961-2015	2.8	0.7	2.9	4.1	3.1	2.0	1.4	3.0	1.7	1.8	3.0	2.1	2.2	0.40
24261	1966-2012	<i>3.1</i> m	-3.3	-0.1	1.7	3.1 m	2.3	2.2	2.4	-0.2	0.5	3.6 2000	-0.1	1.4 m	0.30
24266*	1969-2015	5.6	2.1	0.0	2.3	3.8	1.7	3.2	2.1	0.5	0.6	1.9	4.5	2.1	0.45
24371	1942-2015	3.5 1990	0.7	1.0	3.4 1967	3.3 1970	0.8	1.5 m	0.3	-0.4	0.7	4.1 1982	1.9	1.8 1982	0.24
Indigirka River basin															
21946	1939-2015	1.4	0.4	1.4	2.8	1.1	0.4	1.5 <i>1986</i>	2.1 2001	2.9 1979	4.4 1993	4.7 1993	2.5	2.3 1987	0.30
24076	1960-2015	4.6 <i>1992</i>	1.8	2.5	3.7 2002	3.1 2004	0.9	1.8	2.0 1994	1.6 m	1.7	3.2	3.1	2.5 1987	0.45
24382	1938-2015	5.1 1975	3.0 1978	4.1 1983	4.5 1980	3.5 1987	1.1	2.2 1986	1.4	1.3	4.5 1987	6.3 1983	5.2 1978	3.6 1987	0.46
24585*	1966-2012	-1.6	0.1	4.0	1.4	1.8	2.2	1.7	0.7	0.3	1.5	4.7	2.9	1.7	0.36
24588	1957-2015	2.4	0.1	3.3 2000	1.0	1.2	1.4	1.6 m	1.0	0	2.1	3.8 m	2.4	1.8 1979	0.31
24679*	1942-2015	1.7	-0.9	2.5	1.9	2.8	1.9	1.0	-0.6	-0.7	0.5	2.3	1.2	1.2	0.16
24684	1957-2015	1.3	-0.3	3.0 1999	1.1	1.9	2.0 1988	2.1 1990	1.2	0.6	1.1	5.7 1983	3.2	2.1 1979	0.36
24688	1935-2015	3.7 1973	0.8	4.1 1988	2.8 1969	2.7 1970	2.1 1985	1.6 1993	0.7	0.5	1.4	1.4	1.8	2.0 1979	0.25
24691	1966-2015	1.6	-0.5	4.0 1999	1.3	1.9	1.4	2.2 1987	1.0	0.3	3.1 1993	6.2 1983	5.0 1994	2.3 1993	0.46

Table S1: Detected changes of monthly and annual air temperature (°C) and change points (year).

Index	Period	1	2	3	4	5	6	7	8	9	10	11	12	Year	Cold (10-4)	Warm
Yana River basin																
21931	1966-2015	2.5	-1.4	3.0	0.0	-0.7	-10.0	-12.9	-26.0 -71	-6.3	-1.5	4.5	1.1	-36.2		
24261	1966-2012	-1.7	-1.8	-1.2	-4.5	5.3	8.1	17.9	6.5	2.0	-4.2	-0.3	-3.5 -67	32.6		
24266	1966-2015	-2.9	-2.9	-1.3	-3.1	2.2	5.8	3.0	5.1	7.3	-3.9	-1.9	-5.0	9.0	-19.3 -36 1979	
24371	1966-2015	-1.3	-1.7	-0.7	-4.6	1.8	13.9	5.7	8.5	5.5	-4.8	-2.5	-4.2 -63 1985	10.8	-23.6 -46 1996	
	Indigirka River basin															
24382	1966-2015	-6.7 -92 1986	-4.8 -71 m	-2.9	-1.0	4.3	5.2	3.3	7.1	4.1	0.0	0.8	-4.3	11.8	-16.0 -29 m	
24585	1966-2015	-4.2 -58	-2.6	1.2	-0.8	-0.2	5.5	-8.9	5.5	14.6	2.7	2.9	-3.0	15.5		
24588	1966-2015	-4.3 -68	-1.5	0.0	-2.8	1.7	-12.1	-8.8	2.8	-0.2	-1.7	-1.7	-1.9	-26.6	-14.9 -26	
24679	1966-2015	-4.0 -90	-3.3 -121	-2.1	-0.4	1.3	20.7 44	-28.3	-3.2	13.8	-1.7	-0.1	-1.0	41.6	-13.0 -30	
24684	1966-2015	-2.4	-0.6	1.8	0.3	-1.6	2.1	-9.0	-4.5	3.9	0.5	2.7	-1.1	13.7		
24688	1966-2015	-4.4 -60 1980	-3.0 -44 1994	-1.3	-0.6	0.5	7.5	0.1	9.7	8.5	-1.0	3.0	-4.5	40.9		53 34 m
24691	1966-2015	-5.5 -62 1987	-3.6	1.1	1.7	-3.5	9.2	-2.8	12.3	5.8	3.0	3.5	-3.8	15.9		
24076	1966-2012	-2.0	-2.6	1.6	-3.8	3.1	21.8 49	9.4	23.7	15.3 49	5.0	4.0	-1.9	58.5		
21946	1966-2012	-5.3	-4.8	2.8	0.0	-2.1	-14.4	-22.9 -73	-11.5	-1.7	5.6	5.0	3.3	-42.9		-48 -60

Table S2: Detected changes of monthly and seasonal precipitation (mm) and change points (year), 1966-2015.

ID	Period	Area, 1	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Freshet
2470	1052		NT A	N T 4	NT A	NT 4	6.0	14.0	10.0	12.0		0.10	0.00	0.00	=0	onset dates
3478	1953-	22.6	NA	NA	NA	NA	6.9	14.0	12.9	13.0	7.1	0.12	0.00	0.00	79	5.8
	2007									50	54	31			69	
										1981	m	1987			1988	
3479	1956-	7570	NA	NA	NA	NA	5.6	12.8	4.6	8.3	5.5	0.1	0.0	NA	38	
	2014							64		54	67					
								m		1987	m					
3474	1949-	8290	NA	NA	NA	NA	7.5	-6.7	-26	8.7	8.4	4.5	0.3	0.0	-7	10
	2007						54		-38			78				
							1964*		т			1991				
3424	1957-	16700	0.0	NA	NA	NA	2.9	7.3	-5.5	0.4	5.7	0.8	0.1	0.0	9	4.5
	2015										53	54				m
											1982	1987				
3430	1956-	23900	0.0	NA	NA	NA	5.5	12.6	-2.2	0.4	7.6	2.0	0.4	0.1	20	7.1
	2015						64				50	72	77	149		1997
							1999				1994	1982	1981	1981		
3483	1945-	40000	0.0	0.0	NA	NA	3.6	3.4	1.8	9.0	5.7	1.3	0.31	-0.04	24	
	2015						71				46	74	74	-54		
							1966*				m	2001	1998	m		
3414	1936-	45300	0.04	0.0	0.0	0.0	4.3	7.6	3.2	5.5	5.8	1.0	0.3	0.1	24	6.5
_	2015		161				60				46	51	77	126	22	1978
	2010		1977				1965*				1982	1993	1994	1994	 m	1970
3443	1960-	52800	0.0	NA	NA	0.0	15.5	18.6	17.4	27.0	19.0	3.3	0.2	0.0	104	6.8
	2015						79	28	36	62	83	96	44		51	1995
	2010						1987	1995	1995	1986	1981	1992	1994		1995	1770
3445	1937-	89600	0.0	0.0	0.0	0.0	12.4	17.9	7.4	24.7	15.7	2.1	0.5	0.1	82	4.3
	2015						83	28		63	69	54	54	75	42	m
							1966*	1988		1982	1981	1992	1987	1987	1987	
3861	1972-	224000	0.03	0.0	-0.004	0.0	-0.8	16.2	9.4	9.2	7.8	4.4	0.4	0.12	60	
	2007		79		-153			40				118	118	75	40	
			1981		1989			1983				1993	m	1982	1983	
			1701		1)0)		1	1705				1)))	111	1702	1705	

Table S3: Detected changes of monthly and annual streamflow (mm and %) and change point (year) and freshet onset dates. The Yana River basin

ID	Period	Area, km ²	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Freshet onset dates
3516	1964- 2014	16.6	NA	NA	NA	0.0	25.7 78	12.4	-9.1	18.3	36.8 111	1.6 107	0.0	0.0	115 32	
							1989				1992	1992			1993	
3527	1945-	23	NA	NA	NA	NA	3.9	-11.1	10.9	6.4	8.8	0.0	NA	NA	21	4.2
	2014										87					m
											1993					
3510	1946-	644	NA	NA	NA	NA	5.2	-14.2	5.3	14.0	6.3	0.1	0.0	NA	21	
	2014							-61		65	61					
								1967*		1982	1993					
3499	1956-	7680	NA	NA	NA	NA	6.8	11.6	-	-2.6	9.9	3.3	0.43	0.0	26	5.4
	2015						103		17.6		49	70	52			т
							1996				1993	1993	1994			
3507	1946-	17600	0.03	0.02	0.02	0.01	15.3	4.0	2.9	23.4	16.5	2.1	0.6	0.1	81	7.6
	2015		59	91	86	57	106			53	76	61	88	80	39	1967
			1985	1985	1985	1985	1964*			m	1993	1990	1988	1987	1995	
3518	1945-	22300	0.0	NA	NA	NA	11.8	-12.3	-3.2	3.9	9.1	0.9	0.2	0.0	14	3.9
	2015						90				51	34	47			1967
							1966*				1993	1966*	1994			
3488	1956-	51100	0.1	0.10	0.11	0.10	7.6	9.9	-4.4	7.6	12.5	2.3	0.4	0.0	43	5.1
	2015			54	67	56	97				59	45	25			m
				2003	2004	2002	1980				1993	2002	1999			
3489	1944-	83500	0.14	0.10	0.10	0.14	7.4	-0.6	-6.0	13.2	11.4	1.4	0.4	0.3	33	4.6
	2015		<mark>64</mark>	86	120	159	92			34	55	34	28	63	19	1967
			2006	1977	1983	1981	1966*			m	1993	1993	1982	1983	1995	
3871	1936-	30500	-0.08	-0.01	0.01	0.01	0.2	0.3	-6.3	4.3	11	0.7	-0.1	-0.2	8.1	
	1996	0	-25								49			-32		
			1964*								1965			1969		

 Table S4: Detected changes of monthly and annual streamflow (mm and %) and change point (year) and freshet onset dates. The

 Indigirka River basin

Table S5: Detected changes of maximum water discharges in May – September (m³s⁻¹ and %) and change points (year). Only those gauges are included into the table, where the changes were identified.

ID	May	Iune	Iul	Αιισ	Sen
10	ivitay	June	541	Tug	0.71
3516					65.5
0010					1993
					0.22
3527					54.1
					1965, 1971
		-13.5		17.5	5.3
3510		-47.7		69.9	47.4
		т		1982	1993
	62.0				63.4
3499	64.8				43.3
	т				m
	431				298
3507	83.4				78.3
	1964				1981, 1993
	403				183
3518	72.0				44.8
	1987, 1966				1971, 1993
	384				445
3488	59.4				58.7
	1987, 1984				1993
	848				794
3489	71.2				58.9
	1965				1973, 1993
2470			0.85		
3478			84.4		
		1.02	m	0.6	40
2470		103		90	49
5479		01.0		02.0	08.2
		1994		1907	02.6
3121					93.0 53.3
3424					JJ.J
	106				116
3430	49.4				36.4
5150	1999				m
					158
3483					31.8
	495				239
3414	85.2				50.3
	1964				1976, 1995
			1100	1021	815
3443			46.7	48.8	70.5
			m	m	1981
	1520			1631	985
3445	65.6			55.8	59.8
	1988, 1966			1986, 1984	1981
				1298	
3861				26.4	
				1984	

Fig. S1 Changes of air temperature at some meteorological stations of the studied region

40 Figure S2: Changes of precipitation at some meteorological stations of the studied region

Figure S3: Changes of monthly soil temperature at 80 cm depth at the Verkhoyansk (ID24266), Oymyakon (ID24688) and Ust'-Moma (ID24382) meteorological stations, 1966 (1977)-2015. Red dash line is Sen's estimate. The year of change point where continuous data is available was estimated with the Pettitt's test at $p \le 0.05$

Figure S4: Patterns of streamflow changes in May, group A (green, orange and red – the trend slope over the period of record, before and after change point respectively)

50 Figure S5: Patterns of streamflow changes in May, group B (green, orange and red – the trend slope over the period of record, before and after change point respectively)

Figure S6: Changes of streamflow in June and August

55

Figure S7: Changes of streamflow in September and October

Figure S8: Changes of streamflow in November and December

60 Figure S9: Changes of streamflow in January – April

Figure S10: Changes of annual streamflow

65 Figure S11: Soil temperature at Oymyakon (ID 24688) at 0.4 m depth, 1985-2013. One may note abrupt change of maximum soil temperature after data gap in 1999-2000.

Figure S12: Correlation of runoff and liquid precipitation in September, Ust-Charky
 meteorological station (ID 24371) – gauge ID 3478

- Figure S13: Changes of streamflow in August. Here and in following Fig. S14 S18: statistically significant trends values are divided into 4 groups and painted with different colours accordingly: change points < 1985 green, 1986-1995 violet, 1996 and later yellow, check monotonically trends. 1 gauges with significance changes (basin area < 1000 km²), 2 gauges without significance changes (basin area < 1000 km²), 3 gauges
- 80 with significance changes (basin area > 1000 km²), 2 gauges without significance changes (basin area > 1000 km²)

Figure S14: Changes of streamflow in September. All designations are the same as in Fig. 85 S13.

Figure S15: Changes of streamflow in October. All designations are the same as in Fig. S13

Figure S16: Changes of streamflow in November. All designations are the same as in Fig. S13.

Figure S17: Changes of streamflow in December. All designations are the same as in Fig. S13.

Figure S18: Changes of annual streamflow. All designations are the same as in Fig. S13.