Articles | Volume 12, issue 1
https://doi.org/10.5194/tc-12-49-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-12-49-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes
Werner M. J. Lazeroms
CORRESPONDING AUTHOR
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
Adrian Jenkins
British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
G. Hilmar Gudmundsson
British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
Roderik S. W. van de Wal
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
Viewed
Total article views: 5,285 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Apr 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,336 | 1,809 | 140 | 5,285 | 114 | 142 |
- HTML: 3,336
- PDF: 1,809
- XML: 140
- Total: 5,285
- BibTeX: 114
- EndNote: 142
Total article views: 3,434 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 09 Jan 2018)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,182 | 1,164 | 88 | 3,434 | 96 | 91 |
- HTML: 2,182
- PDF: 1,164
- XML: 88
- Total: 3,434
- BibTeX: 96
- EndNote: 91
Total article views: 1,851 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Apr 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,154 | 645 | 52 | 1,851 | 18 | 51 |
- HTML: 1,154
- PDF: 645
- XML: 52
- Total: 1,851
- BibTeX: 18
- EndNote: 51
Viewed (geographical distribution)
Total article views: 5,285 (including HTML, PDF, and XML)
Thereof 4,849 with geography defined
and 436 with unknown origin.
Total article views: 3,434 (including HTML, PDF, and XML)
Thereof 3,046 with geography defined
and 388 with unknown origin.
Total article views: 1,851 (including HTML, PDF, and XML)
Thereof 1,803 with geography defined
and 48 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
54 citations as recorded by crossref.
- What Determines the Shape of a Pine‐Island‐Like Ice Shelf? Y. Nakayama et al. 10.1029/2022GL101272
- The Relative Impacts of Initialization and Climate Forcing in Coupled Ice Sheet‐Ocean Modeling: Application to Pope, Smith, and Kohler Glaciers D. Goldberg & P. Holland 10.1029/2021JF006570
- On the Multiscale Oceanic Heat Transports Toward the Bases of the Antarctic Ice Shelves Z. Wang et al. 10.34133/olar.0010
- Model insights into bed control on retreat of Thwaites Glacier, West Antarctica E. Schwans et al. 10.1017/jog.2023.13
- Representation of basal melting at the grounding line in ice flow models H. Seroussi & M. Morlighem 10.5194/tc-12-3085-2018
- Effect of Subshelf Melt Variability on Sea Level Rise Contribution From Thwaites Glacier, Antarctica M. Hoffman et al. 10.1029/2019JF005155
- Simulated last deglaciation of the Barents Sea Ice Sheet primarily driven by oceanic conditions M. Petrini et al. 10.1016/j.quascirev.2020.106314
- The paradigm shift in Antarctic ice sheet modelling F. Pattyn 10.1038/s41467-018-05003-z
- A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections N. Jourdain et al. 10.5194/tc-14-3111-2020
- Spatio-temporal variability of processes across Antarctic ice-bed–ocean interfaces F. Colleoni et al. 10.1038/s41467-018-04583-0
- Uncertainties in Long-Term Twenty-First Century Process-Based Coastal Sea-Level Projections R. van de Wal et al. 10.1007/s10712-019-09575-3
- Brief communication: PICOP, a new ocean melt parameterization under ice shelves combining PICO and a plume model T. Pelle et al. 10.5194/tc-13-1043-2019
- Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2) A. Levermann et al. 10.5194/esd-11-35-2020
- Aurora Basin, the Weak Underbelly of East Antarctica T. Pelle et al. 10.1029/2019GL086821
- Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0) C. Berends et al. 10.5194/gmd-15-5667-2022
- Strong impact of sub-shelf melt parameterisation on ice-sheet retreat in idealised and realistic Antarctic topography C. Berends et al. 10.1017/jog.2023.33
- The Impact of Variable Ocean Temperatures on Totten Glacier Stability and Discharge F. McCormack et al. 10.1029/2020GL091790
- An assessment of basal melt parameterisations for Antarctic ice shelves C. Burgard et al. 10.5194/tc-16-4931-2022
- Exploring the impact of atmospheric forcing and basal drag on the Antarctic Ice Sheet under Last Glacial Maximum conditions J. Blasco et al. 10.5194/tc-15-215-2021
- Hydraulic suppression of basal glacier melt in sill fjords J. Nilsson et al. 10.5194/tc-17-2455-2023
- A High‐End Estimate of Sea Level Rise for Practitioners R. van de Wal et al. 10.1029/2022EF002751
- Modelling the Antarctic Ice Sheet across the mid-Pleistocene transition – implications for Oldest Ice J. Sutter et al. 10.5194/tc-13-2023-2019
- A synthesis of thermodynamic ablation at ice–ocean interfaces from theory, observations and models A. Malyarenko et al. 10.1016/j.ocemod.2020.101692
- Meeting User Needs for Sea Level Rise Information: A Decision Analysis Perspective J. Hinkel et al. 10.1029/2018EF001071
- An Analytical Derivation of Ice-Shelf Basal Melt Based on the Dynamics of Meltwater Plumes W. Lazeroms et al. 10.1175/JPO-D-18-0131.1
- ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century H. Seroussi et al. 10.5194/tc-14-3033-2020
- Thermohaline structure and circulation beneath the Langhovde Glacier ice shelf in East Antarctica M. Minowa et al. 10.1038/s41467-021-23534-w
- Temporal and spatial changes of the basal channel of the Getz Ice Shelf in Antarctica derived from multi-source data Z. Wang et al. 10.1007/s13131-022-1989-1
- Automatic Extraction of the Basal Channel Based on Neural Network X. Song et al. 10.1109/JSTARS.2022.3184156
- Basal Channel Extraction and Variation Analysis of Nioghalvfjerdsfjorden Ice Shelf in Greenland Z. Wang et al. 10.3390/rs12091474
- Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP) S. Sun et al. 10.1017/jog.2020.67
- Predicting ocean-induced ice-shelf melt rates using deep learning S. Rosier et al. 10.5194/tc-17-499-2023
- Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3) L. Favier et al. 10.5194/gmd-12-2255-2019
- A Semi-Empirical Framework for ice sheet response analysis under Oceanic forcing in Antarctica and Greenland X. Luo & T. Lin 10.1007/s00382-022-06317-x
- Ocean-forced evolution of the Amundsen Sea catchment, West Antarctica, by 2100 A. Alevropoulos-Borrill et al. 10.5194/tc-14-1245-2020
- The Utrecht Finite Volume Ice-Sheet Model: UFEMISM (version 1.0) C. Berends et al. 10.5194/gmd-14-2443-2021
- Process-based estimate of global-mean sea-level changes in the Common Era N. Gangadharan et al. 10.5194/esd-13-1417-2022
- Antarctic sub-shelf melt rates via PICO R. Reese et al. 10.5194/tc-12-1969-2018
- Basal melt rates and ocean circulation under the Ryder Glacier ice tongue and their response to climate warming: a high-resolution modelling study J. Wiskandt et al. 10.5194/tc-17-2755-2023
- Change in future climate due to Antarctic meltwater B. Bronselaer et al. 10.1038/s41586-018-0712-z
- Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models S. Nowicki et al. 10.5194/tc-14-2331-2020
- The role of history and strength of the oceanic forcing in sea level projections from Antarctica with the Parallel Ice Sheet Model R. Reese et al. 10.5194/tc-14-3097-2020
- Subglacial Plumes I. Hewitt 10.1146/annurev-fluid-010719-060252
- Ocean temperature impact on ice shelf extent in the eastern Antarctic Peninsula J. Etourneau et al. 10.1038/s41467-018-08195-6
- Towards Comprehensive Observing and Modeling Systems for Monitoring and Predicting Regional to Coastal Sea Level R. Ponte et al. 10.3389/fmars.2019.00437
- Asymptotic analysis of subglacial plumes in stratified environments A. Bradley et al. 10.1098/rspa.2021.0846
- The Density‐Driven Winter Intensification of the Ross Sea Circulation S. Jendersie et al. 10.1029/2018JC013965
- Effects of calving and submarine melting on steady states and stability of buttressed marine ice sheets M. Haseloff & O. Sergienko 10.1017/jog.2022.29
- Ocean as the main driver of Antarctic ice sheet retreat during the Holocene X. Crosta et al. 10.1016/j.gloplacha.2018.04.007
- Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3) L. Favier et al. 10.5194/gmd-12-2255-2019
- Progress in Numerical Modeling of Antarctic Ice-Sheet Dynamics F. Pattyn et al. 10.1007/s40641-017-0069-7
- The Transient Response of Ice Shelf Melting to Ocean Change P. Holland 10.1175/JPO-D-17-0071.1
- Developments in Simulating and Parameterizing Interactions Between the Southern Ocean and the Antarctic Ice Sheet X. Asay-Davis et al. 10.1007/s40641-017-0071-0
- Ocean‐Forced Ice‐Shelf Thinning in a Synchronously Coupled Ice‐Ocean Model J. Jordan et al. 10.1002/2017JC013251
49 citations as recorded by crossref.
- What Determines the Shape of a Pine‐Island‐Like Ice Shelf? Y. Nakayama et al. 10.1029/2022GL101272
- The Relative Impacts of Initialization and Climate Forcing in Coupled Ice Sheet‐Ocean Modeling: Application to Pope, Smith, and Kohler Glaciers D. Goldberg & P. Holland 10.1029/2021JF006570
- On the Multiscale Oceanic Heat Transports Toward the Bases of the Antarctic Ice Shelves Z. Wang et al. 10.34133/olar.0010
- Model insights into bed control on retreat of Thwaites Glacier, West Antarctica E. Schwans et al. 10.1017/jog.2023.13
- Representation of basal melting at the grounding line in ice flow models H. Seroussi & M. Morlighem 10.5194/tc-12-3085-2018
- Effect of Subshelf Melt Variability on Sea Level Rise Contribution From Thwaites Glacier, Antarctica M. Hoffman et al. 10.1029/2019JF005155
- Simulated last deglaciation of the Barents Sea Ice Sheet primarily driven by oceanic conditions M. Petrini et al. 10.1016/j.quascirev.2020.106314
- The paradigm shift in Antarctic ice sheet modelling F. Pattyn 10.1038/s41467-018-05003-z
- A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections N. Jourdain et al. 10.5194/tc-14-3111-2020
- Spatio-temporal variability of processes across Antarctic ice-bed–ocean interfaces F. Colleoni et al. 10.1038/s41467-018-04583-0
- Uncertainties in Long-Term Twenty-First Century Process-Based Coastal Sea-Level Projections R. van de Wal et al. 10.1007/s10712-019-09575-3
- Brief communication: PICOP, a new ocean melt parameterization under ice shelves combining PICO and a plume model T. Pelle et al. 10.5194/tc-13-1043-2019
- Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2) A. Levermann et al. 10.5194/esd-11-35-2020
- Aurora Basin, the Weak Underbelly of East Antarctica T. Pelle et al. 10.1029/2019GL086821
- Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0) C. Berends et al. 10.5194/gmd-15-5667-2022
- Strong impact of sub-shelf melt parameterisation on ice-sheet retreat in idealised and realistic Antarctic topography C. Berends et al. 10.1017/jog.2023.33
- The Impact of Variable Ocean Temperatures on Totten Glacier Stability and Discharge F. McCormack et al. 10.1029/2020GL091790
- An assessment of basal melt parameterisations for Antarctic ice shelves C. Burgard et al. 10.5194/tc-16-4931-2022
- Exploring the impact of atmospheric forcing and basal drag on the Antarctic Ice Sheet under Last Glacial Maximum conditions J. Blasco et al. 10.5194/tc-15-215-2021
- Hydraulic suppression of basal glacier melt in sill fjords J. Nilsson et al. 10.5194/tc-17-2455-2023
- A High‐End Estimate of Sea Level Rise for Practitioners R. van de Wal et al. 10.1029/2022EF002751
- Modelling the Antarctic Ice Sheet across the mid-Pleistocene transition – implications for Oldest Ice J. Sutter et al. 10.5194/tc-13-2023-2019
- A synthesis of thermodynamic ablation at ice–ocean interfaces from theory, observations and models A. Malyarenko et al. 10.1016/j.ocemod.2020.101692
- Meeting User Needs for Sea Level Rise Information: A Decision Analysis Perspective J. Hinkel et al. 10.1029/2018EF001071
- An Analytical Derivation of Ice-Shelf Basal Melt Based on the Dynamics of Meltwater Plumes W. Lazeroms et al. 10.1175/JPO-D-18-0131.1
- ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century H. Seroussi et al. 10.5194/tc-14-3033-2020
- Thermohaline structure and circulation beneath the Langhovde Glacier ice shelf in East Antarctica M. Minowa et al. 10.1038/s41467-021-23534-w
- Temporal and spatial changes of the basal channel of the Getz Ice Shelf in Antarctica derived from multi-source data Z. Wang et al. 10.1007/s13131-022-1989-1
- Automatic Extraction of the Basal Channel Based on Neural Network X. Song et al. 10.1109/JSTARS.2022.3184156
- Basal Channel Extraction and Variation Analysis of Nioghalvfjerdsfjorden Ice Shelf in Greenland Z. Wang et al. 10.3390/rs12091474
- Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP) S. Sun et al. 10.1017/jog.2020.67
- Predicting ocean-induced ice-shelf melt rates using deep learning S. Rosier et al. 10.5194/tc-17-499-2023
- Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3) L. Favier et al. 10.5194/gmd-12-2255-2019
- A Semi-Empirical Framework for ice sheet response analysis under Oceanic forcing in Antarctica and Greenland X. Luo & T. Lin 10.1007/s00382-022-06317-x
- Ocean-forced evolution of the Amundsen Sea catchment, West Antarctica, by 2100 A. Alevropoulos-Borrill et al. 10.5194/tc-14-1245-2020
- The Utrecht Finite Volume Ice-Sheet Model: UFEMISM (version 1.0) C. Berends et al. 10.5194/gmd-14-2443-2021
- Process-based estimate of global-mean sea-level changes in the Common Era N. Gangadharan et al. 10.5194/esd-13-1417-2022
- Antarctic sub-shelf melt rates via PICO R. Reese et al. 10.5194/tc-12-1969-2018
- Basal melt rates and ocean circulation under the Ryder Glacier ice tongue and their response to climate warming: a high-resolution modelling study J. Wiskandt et al. 10.5194/tc-17-2755-2023
- Change in future climate due to Antarctic meltwater B. Bronselaer et al. 10.1038/s41586-018-0712-z
- Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models S. Nowicki et al. 10.5194/tc-14-2331-2020
- The role of history and strength of the oceanic forcing in sea level projections from Antarctica with the Parallel Ice Sheet Model R. Reese et al. 10.5194/tc-14-3097-2020
- Subglacial Plumes I. Hewitt 10.1146/annurev-fluid-010719-060252
- Ocean temperature impact on ice shelf extent in the eastern Antarctic Peninsula J. Etourneau et al. 10.1038/s41467-018-08195-6
- Towards Comprehensive Observing and Modeling Systems for Monitoring and Predicting Regional to Coastal Sea Level R. Ponte et al. 10.3389/fmars.2019.00437
- Asymptotic analysis of subglacial plumes in stratified environments A. Bradley et al. 10.1098/rspa.2021.0846
- The Density‐Driven Winter Intensification of the Ross Sea Circulation S. Jendersie et al. 10.1029/2018JC013965
- Effects of calving and submarine melting on steady states and stability of buttressed marine ice sheets M. Haseloff & O. Sergienko 10.1017/jog.2022.29
- Ocean as the main driver of Antarctic ice sheet retreat during the Holocene X. Crosta et al. 10.1016/j.gloplacha.2018.04.007
5 citations as recorded by crossref.
- Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3) L. Favier et al. 10.5194/gmd-12-2255-2019
- Progress in Numerical Modeling of Antarctic Ice-Sheet Dynamics F. Pattyn et al. 10.1007/s40641-017-0069-7
- The Transient Response of Ice Shelf Melting to Ocean Change P. Holland 10.1175/JPO-D-17-0071.1
- Developments in Simulating and Parameterizing Interactions Between the Southern Ocean and the Antarctic Ice Sheet X. Asay-Davis et al. 10.1007/s40641-017-0071-0
- Ocean‐Forced Ice‐Shelf Thinning in a Synchronously Coupled Ice‐Ocean Model J. Jordan et al. 10.1002/2017JC013251
Discussed (final revised paper)
Latest update: 20 Sep 2023
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(20590 KB) - Full-text XML
Short summary
Basal melting of ice shelves is a major factor in the decline of the Antarctic Ice Sheet, which can contribute significantly to sea-level rise. Here, we investigate a new basal melt model based on the dynamics of meltwater plumes. For the first time, this model is applied to all Antarctic ice shelves. The model results in a realistic melt-rate pattern given suitable data for the topography and ocean temperature, making it a promising tool for future simulations of the Antarctic Ice Sheet.
Basal melting of ice shelves is a major factor in the decline of the Antarctic Ice Sheet, which...