Articles | Volume 12, issue 11
https://doi.org/10.5194/tc-12-3551-2018
https://doi.org/10.5194/tc-12-3551-2018
Research article
 | 
13 Nov 2018
Research article |  | 13 Nov 2018

Estimating snow depth over Arctic sea ice from calibrated dual-frequency radar freeboards

Isobel R. Lawrence, Michel C. Tsamados, Julienne C. Stroeve, Thomas W. K. Armitage, and Andy L. Ridout

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Isobel Lawrence on behalf of the Authors (15 Aug 2018)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (30 Aug 2018) by Dirk Notz
RR by Kevin Guerreiro (03 Sep 2018)
ED: Publish as is (25 Oct 2018) by Dirk Notz
AR by Isobel Lawrence on behalf of the Authors (26 Oct 2018)
Download
Short summary
In this paper we estimate the thickness of snow cover on Arctic sea ice from space. We use data from two radar altimeter satellites, AltiKa and CryoSat-2, that have been operating synchronously since 2013. We produce maps of monthly average snow depth for the four growth seasons (October to April): 2012–2013, 2013–2014, 2014–2015, and 2015–2016. Snow depth estimates are essential for the accurate retrieval of sea ice thickness from satellite altimetry.