Articles | Volume 12, issue 5
https://doi.org/10.5194/tc-12-1563-2018
https://doi.org/10.5194/tc-12-1563-2018
Research article
 | 
03 May 2018
Research article |  | 03 May 2018

Simulating the roles of crevasse routing of surface water and basal friction on the surge evolution of Basin 3, Austfonna ice cap

Yongmei Gong, Thomas Zwinger, Jan Åström, Bas Altena, Thomas Schellenberger, Rupert Gladstone, and John C. Moore

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Yongmei Gong on behalf of the Authors (05 Mar 2018)  Author's response   Manuscript 
ED: Publish as is (13 Mar 2018) by Eric Larour
AR by Yongmei Gong on behalf of the Authors (19 Mar 2018)  Manuscript 
Download
Short summary
In this study we apply a discrete element model capable of simulating ice fracturing. A microscopic-scale discrete process is applied in addition to a continuum ice dynamics model to investigate the mechanisms facilitated by basal meltwater production, surface meltwater and ice crack opening, for the surge in Basin 3, Austfonna ice cap. The discrete element model is used to locate the ice cracks that can penetrate though the full thickness of the glacier and deliver surface water to the bed.