Eurasian snow depth in long-term climate reanalyses
Abstract. Snow cover variability has significant effects on local and global climate evolution. By changing surface energy fluxes and hydrological conditions, changes in snow cover can alter atmospheric circulation and lead to remote climate effects. To document such multi-scale climate effects, atmospheric reanalysis and derived products offer the opportunity to analyze snow variability in great detail far back to the early 20th century. So far only little is know about their quality. Comparing snow depth in four long-term reanalysis datasets with Russian in situ snow depth data, we find a moderately high daily correlation (around 0.6–0.7), which is comparable to correlations for the recent era (1981–2010), and a good representation of sub-decadal variability. However, the representation of pre-1950 inter-decadal snow variability is questionable, since reanalysis products divert towards different base states. Limited availability of independent long-term snow data makes it difficult to assess the exact cause for this bifurcation in snow states, but initial investigations point towards representation of the atmosphere rather than differences in assimilated data or snow schemes. This study demonstrates the ability of long-term reanalysis to reproduce snow variability accordingly.