Articles | Volume 11, issue 6
https://doi.org/10.5194/tc-11-2633-2017
https://doi.org/10.5194/tc-11-2633-2017
Research article
 | Highlight paper
 | 
20 Nov 2017
Research article | Highlight paper |  | 20 Nov 2017

A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow

Francois Tuzet, Marie Dumont, Matthieu Lafaysse, Ghislain Picard, Laurent Arnaud, Didier Voisin, Yves Lejeune, Luc Charrois, Pierre Nabat, and Samuel Morin

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by François Tuzet on behalf of the Authors (29 Sep 2017)  Author's response    Manuscript
ED: Publish as is (07 Oct 2017) by Christian Haas
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Light-absorbing impurities deposited on snow, such as soot or dust, strongly modify its evolution. We implemented impurity deposition and evolution in a detailed snowpack model, thereby expanding the reach of such models into addressing the subtle interplays between snow physics and impurities' optical properties. Model results were evaluated based on innovative field observations at an Alpine site. This allows future investigations in the fields of climate, hydrology and avalanche prediction.