Articles | Volume 11, issue 6
https://doi.org/10.5194/tc-11-2411-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-11-2411-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Observationally constrained surface mass balance of Larsen C ice shelf, Antarctica
Peter Kuipers Munneke
CORRESPONDING AUTHOR
Institute for Marine and Atmospheric research, Utrecht University, Utrecht, the Netherlands
Daniel McGrath
Geosciences Department, Colorado State University, Fort Collins, CO, USA
U.S. Geological Survey, Alaska Science Center, Anchorage, AK, USA
Brooke Medley
Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Adrian Luckman
Geography Department, College of Science, Swansea University, Swansea, UK
Suzanne Bevan
Geography Department, College of Science, Swansea University, Swansea, UK
Bernd Kulessa
Geography Department, College of Science, Swansea University, Swansea, UK
Daniela Jansen
Alfred Wegener Institute Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
Adam Booth
School of Earth and Environment, University of Leeds, Leeds, UK
Paul Smeets
Institute for Marine and Atmospheric research, Utrecht University, Utrecht, the Netherlands
Bryn Hubbard
Centre for Glaciology, Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
David Ashmore
Centre for Glaciology, Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
Michiel Van den Broeke
Institute for Marine and Atmospheric research, Utrecht University, Utrecht, the Netherlands
Heidi Sevestre
Department of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
Konrad Steffen
Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
Andrew Shepherd
School of Earth and Environment, University of Leeds, Leeds, UK
Noel Gourmelen
School of Geosciences, University of Edinburgh, Edinburgh, UK
Data sets
Mean surface mass balance over Larsen C ice shelf, Antarctica (1979–2014), assimilated to in situ GPR and snow height data [Data set] P. Kuipers Munneke, D. McGrath, B. Medley, M. R. Van den Broeke, and J. M. Van Wessem https://doi.org/10.15784/601056
Short summary
How much snow falls on the Larsen C ice shelf? This is a relevant question, because this ice shelf might collapse sometime this century. To know if and when this could happen, we found out how much snow falls on its surface. This was difficult, because there are only very few measurements. Here, we used data from automatic weather stations, sled-pulled radars, and a climate model to find that melting the annual snowfall produces about 20 cm of water in the NE and over 70 cm in the SW.
How much snow falls on the Larsen C ice shelf? This is a relevant question, because this ice...