Articles | Volume 11, issue 1
https://doi.org/10.5194/tc-11-191-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-11-191-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957–2014
Torbjørn Ims Østby
CORRESPONDING AUTHOR
Institute of Geoscience, University of Oslo, PO Box 1047 Blindern, 0316 Oslo, Norway
Thomas Vikhamar Schuler
Institute of Geoscience, University of Oslo, PO Box 1047 Blindern, 0316 Oslo, Norway
Jon Ove Hagen
Institute of Geoscience, University of Oslo, PO Box 1047 Blindern, 0316 Oslo, Norway
Regine Hock
Geophysical Institute, University of Alaska, Fairbanks, Alaska 99775-7320, USA
Department of Earth Sciences, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
Jack Kohler
Norwegian Polar Institute, Fram Centre, PO Box 6606 Langnes, 9296 Tromsø, Norway
Carleen H. Reijmer
Institute for Marine and Atmospheric Research, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
Viewed
Total article views: 5,578 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Aug 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
3,189 | 2,086 | 303 | 5,578 | 587 | 168 | 207 |
- HTML: 3,189
- PDF: 2,086
- XML: 303
- Total: 5,578
- Supplement: 587
- BibTeX: 168
- EndNote: 207
Total article views: 4,945 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 26 Jan 2017)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,828 | 1,831 | 286 | 4,945 | 411 | 150 | 190 |
- HTML: 2,828
- PDF: 1,831
- XML: 286
- Total: 4,945
- Supplement: 411
- BibTeX: 150
- EndNote: 190
Total article views: 633 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Aug 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
361 | 255 | 17 | 633 | 176 | 18 | 17 |
- HTML: 361
- PDF: 255
- XML: 17
- Total: 633
- Supplement: 176
- BibTeX: 18
- EndNote: 17
Cited
62 citations as recorded by crossref.
- Holocene glacial history of Svalbard: Status, perspectives and challenges W. Farnsworth et al. 10.1016/j.earscirev.2020.103249
- Nitrate isotope investigations reveal future impacts of climate change on nitrogen inputs and cycling in Arctic fjords: Kongsfjorden and Rijpfjorden (Svalbard) M. Santos-Garcia et al. 10.5194/bg-19-5973-2022
- Paraglacial coasts: challenges for coastal conservation in the Anthropocene J. Knight & M. Strzelecki 10.1007/s11852-020-00748-6
- Fifty Years of Tidewater Glacier Surface Elevation and Retreat Dynamics along the South-East Coast of Spitsbergen (Svalbard Archipelago) J. Kavan et al. 10.3390/rs14020354
- Low elevation of Svalbard glaciers drives high mass loss variability B. Noël et al. 10.1038/s41467-020-18356-1
- COSIPY v1.3 – an open-source coupled snowpack and ice surface energy and mass balance model T. Sauter et al. 10.5194/gmd-13-5645-2020
- Suitability of the Coralline Alga Clathromorphum compactum as an Arctic Archive for Past Sea Ice Cover N. Leclerc et al. 10.1029/2021PA004286
- Mass Balance of Austre Grønfjordbreen, Svalbard, 2006–2020, Estimated by Glaciological, Geodetic and Modeling Aproaches N. Elagina et al. 10.3390/geosciences11020078
- Changes of glacier facies on Hornsund glaciers (Svalbard) during the decade 2007–2017 B. Barzycka et al. 10.1016/j.rse.2020.112060
- Oerlemans Minimal Model as a Possible Instrument for Describing Mountain Glaciation in Earth System Models P. Toropov et al. 10.1134/S0097807823700082
- A new approach to meteorological observations on remote polar glaciers using open-source internet of things technologies S. Filhol et al. 10.3389/fenvs.2023.1085708
- Freshwater input to the Arctic fjord Hornsund (Svalbard) M. Błaszczyk et al. 10.33265/polar.v38.3506
- Paraglacial coasts responses to glacier retreat and associated shifts in river floodplains over decadal timescales (1966–2016), Kongsfjorden, Svalbard M. Bourriquen et al. 10.1002/ldr.3149
- CryoSat-2 interferometric mode calibration and validation: A case study from the Austfonna ice cap, Svalbard A. Morris et al. 10.1016/j.rse.2021.112805
- Climate Controls on the Interseasonal and Interannual Variability of the Surface Mass and Energy Balances of a Tropical Glacier (Zongo Glacier, Bolivia, 16°S): New Insights From the Multi‐Year Application of a Distributed Energy Balance Model P. Autin et al. 10.1029/2021JD035410
- Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites K. Aalstad et al. 10.5194/tc-12-247-2018
- Persistence of Holocene ice cap in northeast Svalbard aided by glacio-isostatic rebound W. Farnsworth et al. 10.1016/j.quascirev.2024.108625
- Time‐lapse photogrammetry reveals hydrological controls of fine‐scale High‐Arctic glacier surface roughness evolution T. Irvine‐Fynn et al. 10.1002/esp.5339
- Tracing freshwater sources and particle discharge in Kongsfjorden: insights from a water isotope approach L. Fang et al. 10.3389/fmars.2024.1426793
- Free amino acids in the Arctic snow and ice core samples: Potential markers for paleoclimatic studies E. Barbaro et al. 10.1016/j.scitotenv.2017.07.041
- Key indicators of Arctic climate change: 1971–2017 J. Box et al. 10.1088/1748-9326/aafc1b
- Tidewater Glaciers and Bedrock Characteristics Control the Phytoplankton Growth Environment in a Fjord in the Arctic L. Halbach et al. 10.3389/fmars.2019.00254
- A decade of glaciological and meteorological observations in the Arctic (Werenskioldbreen, Svalbard) D. Ignatiuk et al. 10.5194/essd-14-2487-2022
- Measured and Modeled Historical Precipitation Trends for Svalbard E. Førland et al. 10.1175/JHM-D-19-0252.1
- Sval_Imp: a gridded forcing dataset for climate change impact research on Svalbard T. Schuler & T. Østby 10.5194/essd-12-875-2020
- Comparison of snow accumulation events on two High-Arctic glaciers to model-derived and observed precipitation A. Pramanik et al. 10.33265/polar.v38.3364
- Tidewater glaciers as “climate refugia” for zooplankton-dependent food web in Kongsfjorden, Svalbard H. Hop et al. 10.3389/fmars.2023.1161912
- Meltwater runoff and glacier mass balance in the high Arctic: 1991–2022 simulations for Svalbard L. Schmidt et al. 10.5194/tc-17-2941-2023
- Melting Characteristics of Snow Cover on Tidewater Glaciers in Hornsund Fjord, Svalbard M. Laska et al. 10.3390/w9100804
- The unquantified mass loss of Northern Hemisphere marine-terminating glaciers from 2000–2020 W. Kochtitzky et al. 10.1038/s41467-022-33231-x
- Late twentieth century increase in northern Spitsbergen (Svalbard) glacier-derived runoff tracked by coralline algal Ba/Ca ratios S. Hetzinger et al. 10.1007/s00382-021-05642-x
- Accelerated Glacier Mass Loss over Svalbard Derived from ICESat-2 in 2019–2021 J. Wang et al. 10.3390/atmos13081255
- Increased Ice Thinning over Svalbard Measured by ICESat/ICESat-2 Laser Altimetry L. Sochor et al. 10.3390/rs13112089
- Differing Climatic Mass Balance Evolution Across Svalbard Glacier Regions Over 1900–2010 M. Möller & J. Kohler 10.3389/feart.2018.00128
- Accelerating future mass loss of Svalbard glaciers from a multi-model ensemble W. van Pelt et al. 10.1017/jog.2021.2
- Glacier Changes in Iceland From ∼1890 to 2019 G. Aðalgeirsdóttir et al. 10.3389/feart.2020.523646
- Reconciling Svalbard Glacier Mass Balance T. Schuler et al. 10.3389/feart.2020.00156
- The surface energy balance of Austre Lovénbreen, Svalbard, during the ablation period in 2014 X. Zou et al. 10.33265/polar.v40.5318
- Retrieval of Svalbard ice flow velocities using Sentinel 1A/1B three-pass Differential SAR Interferometry B. Nela et al. 10.1080/10106049.2022.2032391
- Historical glacier change on Svalbard predicts doubling of mass loss by 2100 E. Geyman et al. 10.1038/s41586-021-04314-4
- Simulating climatic mass balance, seasonal snow development and associated freshwater runoff in the Kongsfjord basin, Svalbard (1980–2016) A. PRAMANIK et al. 10.1017/jog.2018.80
- Spatially heterogeneous effect of climate warming on the Arctic land ice D. Maure et al. 10.5194/tc-17-4645-2023
- Subglacial discharge plume behaviour revealed by CTD-instrumented ringed seals A. Everett et al. 10.1038/s41598-018-31875-8
- The apparent effect of orbital drift on time series of MODIS MOD10A1 albedo on the Greenland ice sheet S. Feng et al. 10.1016/j.srs.2023.100116
- Spread of Svalbard Glacier Mass Loss to Barents Sea Margins Revealed by CryoSat‐2 A. Morris et al. 10.1029/2019JF005357
- A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018) W. van Pelt et al. 10.5194/tc-13-2259-2019
- Climate change is rapidly deteriorating the climatic signal in Svalbard glaciers A. Spolaor et al. 10.5194/tc-18-307-2024
- Holocene ice-free strait followed by dynamic Neoglacial fluctuations: Hornsund, Svalbard A. Osika et al. 10.1177/09596836221088232
- Lateglacial and Holocene glacier activity in the Van Mijenfjorden area, western Svalbard E. Larsen et al. 10.1007/s41063-018-0042-2
- Global sea-level contribution from Arctic land ice: 1971–2017 J. Box et al. 10.1088/1748-9326/aaf2ed
- Abundance and diversity of diazotrophs in the surface sediments of Kongsfjorden, an Arctic fjord T. Jabir et al. 10.1007/s11274-020-02993-1
- Glacier mass-balance and length variation observed in China during the periods 1959–2015 and 1930–2014 Y. Che et al. 10.1016/j.quaint.2017.07.003
- An agenda for the future of Arctic snow research: the view from Svalbard C. Zdanowicz et al. 10.33265/polar.v42.8827
- Modelling glacier mass balance and climate sensitivity in the context of sparse observations: application to Saskatchewan Glacier, western Canada C. Kinnard et al. 10.5194/tc-16-3071-2022
- Morphology, flow dynamics and evolution of englacial conduits in cold ice J. Kamintzis et al. 10.1002/esp.5494
- First discrete iron(II) records from Dome C (Antarctica) and the Holtedahlfonna glacier (Svalbard) F. Burgay et al. 10.1016/j.chemosphere.2020.129335
- Rising Oceans Guaranteed: Arctic Land Ice Loss and Sea Level Rise T. Moon et al. 10.1007/s40641-018-0107-0
- Glacier Calving Rates Due to Subglacial Discharge, Fjord Circulation, and Free Convection K. Schild et al. 10.1029/2017JF004520
- Oerlemans Minimal Model as a Possible Instrument for Describing Mountain Glaciation in Earth System Models P. Toropov et al. 10.31857/S0321059623600205
- A two-dimensional glacier–fjord coupled model applied to estimate submarine melt rates and front position changes of Hansbreen, Svalbard E. DE ANDRÉS et al. 10.1017/jog.2018.61
- Meteorology and summer net radiation of an Arctic alpine glacier: Svenbreen, Svalbard J. Małecki 10.1002/joc.6062
- Seasonal plankton dynamics in Kongsfjorden during two years of contrasting environmental conditions P. Assmy et al. 10.1016/j.pocean.2023.102996
62 citations as recorded by crossref.
- Holocene glacial history of Svalbard: Status, perspectives and challenges W. Farnsworth et al. 10.1016/j.earscirev.2020.103249
- Nitrate isotope investigations reveal future impacts of climate change on nitrogen inputs and cycling in Arctic fjords: Kongsfjorden and Rijpfjorden (Svalbard) M. Santos-Garcia et al. 10.5194/bg-19-5973-2022
- Paraglacial coasts: challenges for coastal conservation in the Anthropocene J. Knight & M. Strzelecki 10.1007/s11852-020-00748-6
- Fifty Years of Tidewater Glacier Surface Elevation and Retreat Dynamics along the South-East Coast of Spitsbergen (Svalbard Archipelago) J. Kavan et al. 10.3390/rs14020354
- Low elevation of Svalbard glaciers drives high mass loss variability B. Noël et al. 10.1038/s41467-020-18356-1
- COSIPY v1.3 – an open-source coupled snowpack and ice surface energy and mass balance model T. Sauter et al. 10.5194/gmd-13-5645-2020
- Suitability of the Coralline Alga Clathromorphum compactum as an Arctic Archive for Past Sea Ice Cover N. Leclerc et al. 10.1029/2021PA004286
- Mass Balance of Austre Grønfjordbreen, Svalbard, 2006–2020, Estimated by Glaciological, Geodetic and Modeling Aproaches N. Elagina et al. 10.3390/geosciences11020078
- Changes of glacier facies on Hornsund glaciers (Svalbard) during the decade 2007–2017 B. Barzycka et al. 10.1016/j.rse.2020.112060
- Oerlemans Minimal Model as a Possible Instrument for Describing Mountain Glaciation in Earth System Models P. Toropov et al. 10.1134/S0097807823700082
- A new approach to meteorological observations on remote polar glaciers using open-source internet of things technologies S. Filhol et al. 10.3389/fenvs.2023.1085708
- Freshwater input to the Arctic fjord Hornsund (Svalbard) M. Błaszczyk et al. 10.33265/polar.v38.3506
- Paraglacial coasts responses to glacier retreat and associated shifts in river floodplains over decadal timescales (1966–2016), Kongsfjorden, Svalbard M. Bourriquen et al. 10.1002/ldr.3149
- CryoSat-2 interferometric mode calibration and validation: A case study from the Austfonna ice cap, Svalbard A. Morris et al. 10.1016/j.rse.2021.112805
- Climate Controls on the Interseasonal and Interannual Variability of the Surface Mass and Energy Balances of a Tropical Glacier (Zongo Glacier, Bolivia, 16°S): New Insights From the Multi‐Year Application of a Distributed Energy Balance Model P. Autin et al. 10.1029/2021JD035410
- Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites K. Aalstad et al. 10.5194/tc-12-247-2018
- Persistence of Holocene ice cap in northeast Svalbard aided by glacio-isostatic rebound W. Farnsworth et al. 10.1016/j.quascirev.2024.108625
- Time‐lapse photogrammetry reveals hydrological controls of fine‐scale High‐Arctic glacier surface roughness evolution T. Irvine‐Fynn et al. 10.1002/esp.5339
- Tracing freshwater sources and particle discharge in Kongsfjorden: insights from a water isotope approach L. Fang et al. 10.3389/fmars.2024.1426793
- Free amino acids in the Arctic snow and ice core samples: Potential markers for paleoclimatic studies E. Barbaro et al. 10.1016/j.scitotenv.2017.07.041
- Key indicators of Arctic climate change: 1971–2017 J. Box et al. 10.1088/1748-9326/aafc1b
- Tidewater Glaciers and Bedrock Characteristics Control the Phytoplankton Growth Environment in a Fjord in the Arctic L. Halbach et al. 10.3389/fmars.2019.00254
- A decade of glaciological and meteorological observations in the Arctic (Werenskioldbreen, Svalbard) D. Ignatiuk et al. 10.5194/essd-14-2487-2022
- Measured and Modeled Historical Precipitation Trends for Svalbard E. Førland et al. 10.1175/JHM-D-19-0252.1
- Sval_Imp: a gridded forcing dataset for climate change impact research on Svalbard T. Schuler & T. Østby 10.5194/essd-12-875-2020
- Comparison of snow accumulation events on two High-Arctic glaciers to model-derived and observed precipitation A. Pramanik et al. 10.33265/polar.v38.3364
- Tidewater glaciers as “climate refugia” for zooplankton-dependent food web in Kongsfjorden, Svalbard H. Hop et al. 10.3389/fmars.2023.1161912
- Meltwater runoff and glacier mass balance in the high Arctic: 1991–2022 simulations for Svalbard L. Schmidt et al. 10.5194/tc-17-2941-2023
- Melting Characteristics of Snow Cover on Tidewater Glaciers in Hornsund Fjord, Svalbard M. Laska et al. 10.3390/w9100804
- The unquantified mass loss of Northern Hemisphere marine-terminating glaciers from 2000–2020 W. Kochtitzky et al. 10.1038/s41467-022-33231-x
- Late twentieth century increase in northern Spitsbergen (Svalbard) glacier-derived runoff tracked by coralline algal Ba/Ca ratios S. Hetzinger et al. 10.1007/s00382-021-05642-x
- Accelerated Glacier Mass Loss over Svalbard Derived from ICESat-2 in 2019–2021 J. Wang et al. 10.3390/atmos13081255
- Increased Ice Thinning over Svalbard Measured by ICESat/ICESat-2 Laser Altimetry L. Sochor et al. 10.3390/rs13112089
- Differing Climatic Mass Balance Evolution Across Svalbard Glacier Regions Over 1900–2010 M. Möller & J. Kohler 10.3389/feart.2018.00128
- Accelerating future mass loss of Svalbard glaciers from a multi-model ensemble W. van Pelt et al. 10.1017/jog.2021.2
- Glacier Changes in Iceland From ∼1890 to 2019 G. Aðalgeirsdóttir et al. 10.3389/feart.2020.523646
- Reconciling Svalbard Glacier Mass Balance T. Schuler et al. 10.3389/feart.2020.00156
- The surface energy balance of Austre Lovénbreen, Svalbard, during the ablation period in 2014 X. Zou et al. 10.33265/polar.v40.5318
- Retrieval of Svalbard ice flow velocities using Sentinel 1A/1B three-pass Differential SAR Interferometry B. Nela et al. 10.1080/10106049.2022.2032391
- Historical glacier change on Svalbard predicts doubling of mass loss by 2100 E. Geyman et al. 10.1038/s41586-021-04314-4
- Simulating climatic mass balance, seasonal snow development and associated freshwater runoff in the Kongsfjord basin, Svalbard (1980–2016) A. PRAMANIK et al. 10.1017/jog.2018.80
- Spatially heterogeneous effect of climate warming on the Arctic land ice D. Maure et al. 10.5194/tc-17-4645-2023
- Subglacial discharge plume behaviour revealed by CTD-instrumented ringed seals A. Everett et al. 10.1038/s41598-018-31875-8
- The apparent effect of orbital drift on time series of MODIS MOD10A1 albedo on the Greenland ice sheet S. Feng et al. 10.1016/j.srs.2023.100116
- Spread of Svalbard Glacier Mass Loss to Barents Sea Margins Revealed by CryoSat‐2 A. Morris et al. 10.1029/2019JF005357
- A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018) W. van Pelt et al. 10.5194/tc-13-2259-2019
- Climate change is rapidly deteriorating the climatic signal in Svalbard glaciers A. Spolaor et al. 10.5194/tc-18-307-2024
- Holocene ice-free strait followed by dynamic Neoglacial fluctuations: Hornsund, Svalbard A. Osika et al. 10.1177/09596836221088232
- Lateglacial and Holocene glacier activity in the Van Mijenfjorden area, western Svalbard E. Larsen et al. 10.1007/s41063-018-0042-2
- Global sea-level contribution from Arctic land ice: 1971–2017 J. Box et al. 10.1088/1748-9326/aaf2ed
- Abundance and diversity of diazotrophs in the surface sediments of Kongsfjorden, an Arctic fjord T. Jabir et al. 10.1007/s11274-020-02993-1
- Glacier mass-balance and length variation observed in China during the periods 1959–2015 and 1930–2014 Y. Che et al. 10.1016/j.quaint.2017.07.003
- An agenda for the future of Arctic snow research: the view from Svalbard C. Zdanowicz et al. 10.33265/polar.v42.8827
- Modelling glacier mass balance and climate sensitivity in the context of sparse observations: application to Saskatchewan Glacier, western Canada C. Kinnard et al. 10.5194/tc-16-3071-2022
- Morphology, flow dynamics and evolution of englacial conduits in cold ice J. Kamintzis et al. 10.1002/esp.5494
- First discrete iron(II) records from Dome C (Antarctica) and the Holtedahlfonna glacier (Svalbard) F. Burgay et al. 10.1016/j.chemosphere.2020.129335
- Rising Oceans Guaranteed: Arctic Land Ice Loss and Sea Level Rise T. Moon et al. 10.1007/s40641-018-0107-0
- Glacier Calving Rates Due to Subglacial Discharge, Fjord Circulation, and Free Convection K. Schild et al. 10.1029/2017JF004520
- Oerlemans Minimal Model as a Possible Instrument for Describing Mountain Glaciation in Earth System Models P. Toropov et al. 10.31857/S0321059623600205
- A two-dimensional glacier–fjord coupled model applied to estimate submarine melt rates and front position changes of Hansbreen, Svalbard E. DE ANDRÉS et al. 10.1017/jog.2018.61
- Meteorology and summer net radiation of an Arctic alpine glacier: Svenbreen, Svalbard J. Małecki 10.1002/joc.6062
- Seasonal plankton dynamics in Kongsfjorden during two years of contrasting environmental conditions P. Assmy et al. 10.1016/j.pocean.2023.102996
Latest update: 23 Nov 2024
Short summary
We present modelled climatic mass balance for all glaciers in Svalbard for the period 1957–2014 at 1 km resolution using a coupled surface energy balance and snowpack model, thereby closing temporal and spatial gaps in direct and geodetic mass balance estimates.
Supporting previous studies, our results indicate increased mass loss over the period.
A detailed analysis of the involved energy fluxes reveals that increased mass loss is caused by atmospheric warming further amplified by feedbacks.
We present modelled climatic mass balance for all glaciers in Svalbard for the period 1957–2014...