Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Volume 10, issue 2
The Cryosphere, 10, 913–925, 2016
https://doi.org/10.5194/tc-10-913-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 10, 913–925, 2016
https://doi.org/10.5194/tc-10-913-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Apr 2016

Research article | 26 Apr 2016

Open-source feature-tracking algorithm for sea ice drift retrieval from Sentinel-1 SAR imagery

Stefan Muckenhuber, Anton Andreevich Korosov, and Stein Sandven Stefan Muckenhuber et al.
  • Nansen Environmental and Remote Sensing Center (NERSC), Thormøhlensgate 47, 5006 Bergen, Norway

Abstract. A computationally efficient, open-source feature-tracking algorithm, called ORB, is adopted and tuned for sea ice drift retrieval from Sentinel-1 SAR (Synthetic Aperture Radar) images. The most suitable setting and parameter values have been found using four Sentinel-1 image pairs representative of sea ice conditions between Greenland and Severnaya Zemlya during winter and spring. The performance of the algorithm is compared to two other feature-tracking algorithms, namely SIFT (Scale-Invariant Feature Transform) and SURF (Speeded-Up Robust Features). Having been applied to 43 test image pairs acquired over Fram Strait and the north-east of Greenland, the tuned ORB (Oriented FAST and Rotated BRIEF) algorithm produces the highest number of vectors (177 513, SIFT: 43 260 and SURF: 25 113), while being computationally most efficient (66 s, SIFT: 182 s and SURF: 99 s per image pair using a 2.7 GHz processor with 8 GB memory). For validation purposes, 314 manually drawn vectors have been compared with the closest calculated vectors, and the resulting root mean square error of ice drift is 563 m. All test image pairs show a significantly better performance of the HV (horizontal transmit, vertical receive) channel due to higher informativeness. On average, around four times as many vectors have been found using HV polarization. All software requirements necessary for applying the presented feature-tracking algorithm are open source to ensure a free and easy implementation.

Publications Copernicus
Download
Short summary
Presently, sea ice drift data do not provide sufficient resolution to estimate convergence and divergence fields on a spatial scaling of a few kilometres. Our goal is to exploit recent improvements and developments in computer vision by adopting a state-of-the-art feature-tracking algorithm to derive high-resolution sea ice drift. A computationally efficient algorithm has been considered, tuned and compared with other available feature-tracking algorithms.
Presently, sea ice drift data do not provide sufficient resolution to estimate convergence and...
Citation