Articles | Volume 10, issue 2
Research article
15 Apr 2016
Research article |  | 15 Apr 2016

Potential genesis and implications of calcium nitrate in Antarctic snow

Kanthanathan Mahalinganathan and Meloth Thamban

Abstract. Among the large variety of particulates in the atmosphere, calcic mineral dust particles have highly reactive surfaces that undergo heterogeneous reactions with atmospheric acids contiguously. The association between nssCa2+, an important proxy indicator of mineral dust, and NO3, a dominant anion in the Antarctic snowpack, was analysed. A total of 41 snow cores ( ∼  1 m each) that represent snow deposited during 2008–2009 were studied along coastal–inland transects from two different regions in East Antarctica – the Princess Elizabeth Land (PEL) and central Dronning Maud Land (cDML). Correlation statistics showed a strong association (at 99 % significance level) between NO3 and nssCa2+ at the near-coastal sections of both PEL (r  =  0.74) and cDML (r  =  0.82) transects. Similarly, a strong association between these ions was also observed in snow deposits at the inland sections of PEL (r  =  0.73) and cDML (r  =  0.84). Such systematic associations between nssCa2+ and NO3 are attributed to the interaction between calcic mineral dust and nitric acid in the atmosphere, leading to the formation of calcium nitrate (Ca(NO3)2) aerosol. Principal component analysis revealed common transport and depositional processes for nssCa2+ and NO3 both in PEL and cDML. Forward- and back-trajectory analyses using HYSPLIT model v. 4 revealed that southern South America (SSA) was an important dust-emitting source to the study region, aided by the westerlies. Particle size distribution showed that over 90 % of the dust was in the range  <  4 µm, indicating that these dust particles reached the Antarctic region via long-range transport from the SSA region. We propose that the association between nssCa2+ and NO3 occurs during the long-range transport due to the formation of Ca(NO3)2 rather than to local neutralisation processes. However, the influence of local dust sources from the nunataks in cDML and the contribution of high sea salt in coastal PEL evidently mask such association in the mountainous and coastal regions respectively. Ionic balance calculations showed that 70–75 % of NO3 in the coastal sections was associated with nssCa2+ (to form Ca(NO3)2). However, in the inland sections, 50–55 % of NO3 was present as HNO3. The study indicates that the input of dust-bound NO3 contributes a significant fraction of the total NO3 deposited in coastal Antarctic snow.

Short summary
Our results show a strong association between calcium and nitrate ions in snow from two different regions that are > 2000 km apart in East Antarctica. Such association could have formed during the interaction between long-range transported dust with the atmospheric nitrate. This study also implies that apart from other well-known sources of nitrate in Antarctica, nitrate associated with mineral dust could form a significant portion of total nitrate deposited in Antarctic snow.