Articles | Volume 10, issue 6
https://doi.org/10.5194/tc-10-2655-2016
https://doi.org/10.5194/tc-10-2655-2016
Research article
 | Highlight paper
 | 
14 Nov 2016
Research article | Highlight paper |  | 14 Nov 2016

Refinement of the ice absorption spectrum in the visible using radiance profile measurements in Antarctic snow

Ghislain Picard, Quentin Libois, and Laurent Arnaud

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Lorena Grabowski on behalf of the Authors (29 Sep 2016)  Author's response
ED: Publish subject to minor revisions (Editor review) (13 Oct 2016) by Florent Dominé
AR by Svenja Lange on behalf of the Authors (26 Oct 2016)  Author's response
ED: Publish as is (31 Oct 2016) by Florent Dominé
Download
Short summary
The absorption of visible light in ice is very weak but its precise value is unknown. By measuring the profile of light intensity in snow, Warren and Brand (2006) deduced that light is attenuated by a factor 2 per kilometer in pure ice at a wavelength of 400 nm. We replicated their experiment on a large number of samples and found that ice absorption is at least 10 times stronger. The paper explores various potential physical and statistical biases that could impact the experiment.