Status: this preprint was under review for the journal TC. A final paper is not foreseen.
Changes in glacier facies zonation on Devon Ice Cap, Nunavut, detected from SAR imagery and field observations
Tyler de Jong,Luke Copland,and David Burgess
Abstract. Envisat ASAR WS images, verified against mass balance, ice core, ground-penetrating radar and air temperature measurements, are used to map changes in the distribution of glacier facies zones across Devon Ice Cap between 2004 and 2011. Glacier ice, saturation/percolation and pseudo dry snow zones are readily distinguishable in the satellite imagery, and the superimposed ice zone can be mapped after comparison with ground measurements. Over the study period there has been a clear upglacier migration of glacier facies, resulting in regions close to the firn line switching from being part of the accumulation area with high backscatter to being part of the ablation area with relatively low backscatter. This has coincided with a rapid increase in positive degree days near the ice cap summit, and an increase in the glacier ice zone from 71 % of the ice cap in 2005 to 92 % of the ice cap in 2011. This has significant implications for the area of the ice cap subject to meltwater runoff.
This preprint has been withdrawn.
Received: 14 Nov 2018 – Discussion started: 26 Nov 2018
Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
We combine field and remote sensing measurements to describe how snow and ice zones across Devon Ice Cap changed over the period 2004–2011. At the start of this period a dry snow zone existed near the ice cap summit, but by 2011 the dry zone had entirely disappeared and the ablation zone comprised 92 % of the ice cap. This has implications for understanding how Canadian Arctic ice caps are responding to a warming climate, and how they may evolve in the future.
We combine field and remote sensing measurements to describe how snow and ice zones across Devon...