the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Impacts of black carbon and mineral dust on radiative forcing and glacier melting during summer in the Qilian Mountains, northeastern Tibetan Plateau
Abstract. Black carbon (BC) and mineral dust (MD), the most important compositions of light absorbing particles (LAPs), significantly reduce the albedo of glaciers and thus accelerate their melting. In order to investigate the impacts of BC and MD on the glacier radiation balance and ablation, a total of 92 surface snow/ice samples were collected along different elevations from 4300–4950 m a.s.l. on Laohugou glacier No. 12 (LHG, 39°10'–35' N, 96°10'–35' E), located at Qilian Mountains, northeastern margin of the Tibetan Plateau (TP), during summer of 2013 and 2014. A thermal-optical method was employed to detect the BC (EC – element carbon) concentrations in snow/ice samples. The results showed that BC and MD concentrations were much lower in snow than those in ice, and gradually declined with increasing elevation. The effects of BC and MD on albedo reduction at different melting conditions were identified with the SNow ICe Aerosol Radiative (SNICAR) model initiated by in-situ observation data. The sensitivity analysis showed that BC had a stronger impact on albedo reduction than MD on this glacier. The impacts of BC represented around 45 % of albedo reduction while the contribution of MD was 35 % when the glacier surface presented as superimposed ice and experienced intensive melting. During summer, when the surface was covered by snow, BC and MD contributed for 15 % and 9 % respectively. On average, the radiative forcing (RF) caused by BC in the snow/ice, more than MD, was 41.6 ± 37.0 W m−2. Meanwhile, compared to glacier melting in summer of 2013 and 2014 (409 mm w.e. and 366 mm w.e., respectively) calculated using the surface energy-mass balance model, contributions of BC and MD were less than 37 % and 32 % respectively of summer melting, while MD and BC together contributed a maximum of 61 %. This study provided the baseline information on BC and MD concentrations in glaciers of the northeastern TP and their contributions in glacier melting during summer.
This preprint has been withdrawn.
-
Withdrawal notice
This preprint has been withdrawn.
-
Preprint
(1071 KB)
-
Supplement
(429 KB)
-
This preprint has been withdrawn.
- Preprint
(1071 KB) - Metadata XML
-
Supplement
(429 KB) - BibTeX
- EndNote
Interactive discussion
-
SC1: 'Comments on “Impacts of black carbon and mineral dust on radiative forcing and glacier melting during summer in the Qilian Mountains, northeastern Tibetan Plateau” by Li et al. (2016)', Cenlin He, 27 Apr 2016
- AC1: 'Reply to Referee 1', Yang LI, 18 Jul 2016
-
RC1: 'Review of ‘Impact of black carbon and mineral dust on radiative forcing and glacier melting during summer in the Qilian Mountains, northeastern Tibetan Plateau’ by Li et al. submitted for publication in The Cryosphere', Anonymous Referee #1, 13 May 2016
- AC2: 'Reply to Referee 1', Yang LI, 18 Jul 2016
- EC1: 'Comment on the paper by Li et al.', Marco Tedesco, 11 Jun 2016
Interactive discussion
-
SC1: 'Comments on “Impacts of black carbon and mineral dust on radiative forcing and glacier melting during summer in the Qilian Mountains, northeastern Tibetan Plateau” by Li et al. (2016)', Cenlin He, 27 Apr 2016
- AC1: 'Reply to Referee 1', Yang LI, 18 Jul 2016
-
RC1: 'Review of ‘Impact of black carbon and mineral dust on radiative forcing and glacier melting during summer in the Qilian Mountains, northeastern Tibetan Plateau’ by Li et al. submitted for publication in The Cryosphere', Anonymous Referee #1, 13 May 2016
- AC2: 'Reply to Referee 1', Yang LI, 18 Jul 2016
- EC1: 'Comment on the paper by Li et al.', Marco Tedesco, 11 Jun 2016
Viewed
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,740 | 609 | 130 | 2,479 | 290 | 130 | 172 |
- HTML: 1,740
- PDF: 609
- XML: 130
- Total: 2,479
- Supplement: 290
- BibTeX: 130
- EndNote: 172
Cited
10 citations as recorded by crossref.
- Concentrations and source regions of light-absorbing particles in snow/ice in northern Pakistan and their impact on snow albedo C. Gul et al. 10.5194/acp-18-4981-2018
- Anthropogenic climate change drives melting of glaciers in the Himalaya S. Romshoo et al. 10.1007/s11356-022-19524-0
- Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis T. Yao et al. 10.1175/BAMS-D-17-0057.1
- Black carbon and mineral dust on two glaciers on the central Tibetan Plateau: sources and implications X. Li et al. 10.1017/jog.2019.100
- Aerosol Optical Properties of Extreme Global Wildfires and Estimated Radiative Forcing With GCOM‐C SGLI K. Tanada et al. 10.1029/2022JD037914
- Nest-site selection, reproductive ecology and shifts within core-use areas of Black-necked Cranes at the northern limit of the Tibetan Plateau L. Zhang et al. 10.7717/peerj.2939
- Potential Effect of Black Carbon on Glacier Mass Balance during the Past 55 Years of Laohugou Glacier No. 12, Western Qilian Mountains J. Chen et al. 10.1007/s12583-019-1238-5
- Enhanced light absorption and reduced snow albedo due to internally mixed mineral dust in grains of snow T. Shi et al. 10.5194/acp-21-6035-2021
- Carbonaceous matter in glacier at the headwaters of the Yangtze River: Concentration, sources and fractionation during the melting process Z. Hu et al. 10.1016/j.jes.2019.08.001
- Measurement of light-absorbing particles in surface snow of central and western Himalayan glaciers: spatial variability, radiative impacts, and potential source regions C. Gul et al. 10.5194/acp-22-8725-2022
Saved
Yang Li
Jizu Chen
Shichang Kang
Chaoliu Li
Bin Qu
Lekhendra Tripathee
Fangping Yan
Yulan Zhang
Junmin Guo
Chaman Gul
Xiang Qin
This preprint has been withdrawn.
- Preprint
(1071 KB) - Metadata XML
-
Supplement
(429 KB) - BibTeX
- EndNote