Abstract. Supraglacial debris affects the response of glaciers to climate change by altering the reflectivity of solar radiation and conductive heat flux. To accurately assess the contribution of glacier melts to sea level rise, water resources and natural hazards, it is important to account for the effects of debris. However, due to the practical difficulties of global-scale field measurements, information regarding the spatial distribution of the thickness and thermal properties of debris on glaciers is limited; hence, the effects of debris on glacier melting are not explicitly taken into account in current global glacier models. In this study, we developed a dataset of the thermal resistance of debris on glaciers at 90-m resolution derived from multi-temporal satellite images and satellite-derived radiation data at the global scale, excluding Greenland, Antarctica, and some of the Arctic. We found that supraglacial debris covered 16.8 % of the entire analyzed glacial area. The highest debris cover percentage occurred in New Zealand, and the lowest was in Iceland. The area of thick debris (which suppresses glacier melting) was about two times that of thin debris (which accelerates glacier melting), indicating that the insulation effect of debris to inhibit glacier melting may dominate at the global scale. The distribution of debris was also related to the slope aspect of glaciers. Despite the limitations of this study, the resulting global distribution of the thermal resistance of debris can be incorporated into global glacier models, and hence it provides a solid basis for evaluating the effects of debris on glacial melting.
Received: 29 Sep 2016 – Discussion started: 15 Nov 2016
Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Supraglacial debris is widely spread in many high-relief mountain regions and affects glacier melting rate and resulting runoff, however, there is no global dataset of debris information. Here we present a first global map of thermal resistance of debris on glaciers at 90 m by using multi-temporal satellite images and radiation data. We believe our result provides a solid basis for evaluating debris effects in global glacier models, which could refine future predictions of glacier meltwater.
Supraglacial debris is widely spread in many high-relief mountain regions and affects glacier...