Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.713 IF 4.713
  • IF 5-year value: 4.927 IF 5-year
    4.927
  • CiteScore value: 8.0 CiteScore
    8.0
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 2.353 SJR 2.353
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 53 h5-index 53
Volume 9, issue 2
The Cryosphere, 9, 663–673, 2015
https://doi.org/10.5194/tc-9-663-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 663–673, 2015
https://doi.org/10.5194/tc-9-663-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Apr 2015

Research article | 09 Apr 2015

On producing sea ice deformation data sets from SAR-derived sea ice motion

S. Bouillon and P. Rampal

Viewed

Total article views: 4,001 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,724 1,092 185 4,001 139 189
  • HTML: 2,724
  • PDF: 1,092
  • XML: 185
  • Total: 4,001
  • BibTeX: 139
  • EndNote: 189
Views and downloads (calculated since 10 Oct 2014)
Cumulative views and downloads (calculated since 10 Oct 2014)

Cited

Saved (final revised paper)

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 08 Jul 2020
Publications Copernicus
Download
Short summary
We present a new method to compute sea ice deformation fields from satellite-derived motion. The method particularly reduces the artificial noise that arises along discontinuities in the sea ice motion field. We estimate that this artificial noise may cause an overestimation of about 60% of sea ice opening and closing. The constant overestimation of the opening and closing could have led in previous studies to a large overestimation of freezing in leads, salt rejection and sea ice ridging.
We present a new method to compute sea ice deformation fields from satellite-derived motion. The...
Citation