Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.713 IF 4.713
  • IF 5-year value: 4.927 IF 5-year
    4.927
  • CiteScore value: 8.0 CiteScore
    8.0
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 2.353 SJR 2.353
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 53 h5-index 53
Volume 9, issue 4
The Cryosphere, 9, 1505–1521, 2015
https://doi.org/10.5194/tc-9-1505-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 1505–1521, 2015
https://doi.org/10.5194/tc-9-1505-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Aug 2015

Research article | 07 Aug 2015

Impact of model developments on present and future simulations of permafrost in a global land-surface model

S. E. Chadburn et al.

Viewed

Total article views: 5,461 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
3,865 1,301 295 5,461 212 262
  • HTML: 3,865
  • PDF: 1,301
  • XML: 295
  • Total: 5,461
  • BibTeX: 212
  • EndNote: 262
Views and downloads (calculated since 25 Mar 2015)
Cumulative views and downloads (calculated since 25 Mar 2015)

Cited

Saved (final revised paper)

Saved (preprint)

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 10 Aug 2020
Publications Copernicus
Download
Short summary
In this paper we use a global land-surface model to study the dynamics of Arctic permafrost. We examine the impact of new and improved processes in the model, namely soil depth and resolution, organic soils, moss and the representation of snow. These improvements make the simulated soil temperatures and thaw depth significantly more realistic. Simulations under future climate scenarios show that permafrost thaws more slowly in the new model version, but still a large amount is lost by 2100.
In this paper we use a global land-surface model to study the dynamics of Arctic permafrost. We...
Citation