Articles | Volume 7, issue 2
https://doi.org/10.5194/tc-7-707-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-7-707-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics
S. Rysgaard
Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
Department of Geological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
Greenland Climate Research Centre, Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
Arctic Research Centre, Aarhus University, 8000 Aarhus, Denmark
D. H. Søgaard
Greenland Climate Research Centre, Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
University of Southern Denmark and NordCEE, Odense M, Denmark
M. Cooper
Department of Geological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
M. Pućko
Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
K. Lennert
Greenland Climate Research Centre, Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
T. N. Papakyriakou
Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
F. Wang
Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
N. X. Geilfus
Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
R. N. Glud
Greenland Climate Research Centre, Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
University of Southern Denmark and NordCEE, Odense M, Denmark
Scottish Association for Marine Science, Oban, UK
J. Ehn
Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
D. F. McGinnis
University of Southern Denmark and NordCEE, Odense M, Denmark
K. Attard
Greenland Climate Research Centre, Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
University of Southern Denmark and NordCEE, Odense M, Denmark
J. Sievers
Arctic Research Centre, Aarhus University, 8000 Aarhus, Denmark
J. W. Deming
University of Washington, School of Oceanography, Seattle, WA, USA
D. Barber
Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
Related authors
No articles found.
Theodor Kindeberg, Karl Michael Attard, Jana Hüller, Julia Müller, Cintia Organo Quintana, and Eduardo Infantes
Biogeosciences, 21, 1685–1705, https://doi.org/10.5194/bg-21-1685-2024, https://doi.org/10.5194/bg-21-1685-2024, 2024
Short summary
Short summary
Seagrass meadows are hotspots for biodiversity and productivity, and planting seagrass is proposed as a tool for mitigating biodiversity loss and climate change. We assessed seagrass planted in different years and found that benthic oxygen and carbon fluxes increased as the seabed developed from bare sediments to a mature seagrass meadow. This increase was partly linked to the diversity of colonizing algae which increased the light-use efficiency of the seagrass meadow community.
Karl M. Attard, Anna Lyssenko, and Iván F. Rodil
Biogeosciences, 20, 1713–1724, https://doi.org/10.5194/bg-20-1713-2023, https://doi.org/10.5194/bg-20-1713-2023, 2023
Short summary
Short summary
Aquatic plants produce a large amount of organic matter through photosynthesis that, following erosion, is deposited on the seafloor. In this study, we show that plant detritus can trigger low-oxygen conditions (hypoxia) in shallow coastal waters, making conditions challenging for most marine animals. We propose that the occurrence of hypoxia may be underestimated because measurements typically do not consider the region closest to the seafloor, where detritus accumulates.
Sergei Kirillov, Igor Dmitrenko, David G. Babb, Jens K. Ehn, Nikolay Koldunov, Søren Rysgaard, David Jensen, and David G. Barber
Ocean Sci., 18, 1535–1557, https://doi.org/10.5194/os-18-1535-2022, https://doi.org/10.5194/os-18-1535-2022, 2022
Short summary
Short summary
The sea ice bridge usually forms during winter in Nares Strait and prevents ice drifting south. However, this bridge has recently become unstable, and in this study we investigate the role of oceanic heat flux in this decline. Using satellite data, we identify areas where sea ice is relatively thin and further attribute those areas to the heat fluxes from the warm subsurface water masses. We also discuss the potential role of such an impact on ice bridge instability and earlier ice break up.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Igor A. Dmitrenko, Vladislav Petrusevich, Gérald Darnis, Sergei A. Kirillov, Alexander S. Komarov, Jens K. Ehn, Alexandre Forest, Louis Fortier, Søren Rysgaard, and David G. Barber
Ocean Sci., 16, 1261–1283, https://doi.org/10.5194/os-16-1261-2020, https://doi.org/10.5194/os-16-1261-2020, 2020
Short summary
Short summary
Diel vertical migration (DVM) of zooplankton is the largest nonhuman migration on the Earth. DVM in the eastern Beaufort Sea was assessed using a 2-year-long time series of currents and acoustic signal from a bottom-anchored oceanographic mooring. Our results show that DVM is deviated by the (i) seasonal and interannual variability in sea ice and (ii) wind-driven water dynamics. We also observed the midnight-sun DVM during summer 2004, a signal masked by suspended particles in summer 2005.
Cited articles
Anderson, L. G., Falck, E., Jones, E. P., Jutterström, S., and Swift, J. H.: Enhanced uptake of atmospheric CO2 during freezing of seawater: A field study in Storfjorden, Svalbard, J. Geophys. Res., 109, C06004, https://doi.org/10.1029/2003JC002120, 2004.
Assur, A.: Composition of sea ice and its tensile strength, SIPRE Research Report 44, 1960.
Cai, W.-J., Chen, L., Chen, B., Gao, Z., Lee, S. H., Chen, J., Pierrot, D., Sullivan, K., Wang, Y., Hu, X., Huang, W.-J., Zhang, Y., Xu, S., Murata, A., Grebmeier, J. M., Jones, E. P., and Zhang, H.: Decrease in the CO2 Uptake Capacity in an Ice-Free Arctic Ocean Basin, Science, 329, 556–559, https://doi.org/10.1126/science.1189338, 2010.
Cox, G. F. N. and Weeks, W. F.: Brine drainage and initial salt entrapment in sodium chloride ice, CRREL Res. Rep. 345, US Army Cold Reg. Res. and Eng. Lab., Hanover, N.H., 1975.
Cox, G. F. N. and Weeks, W. F.: Equations for determining the gas and brine volumes in sea ice samples, J. Glaciol., 29, 306–316, 1983.
Delille, B., Jourdain, B., Borges, A. V., Tison, J.-P., and Delille, D.: Biogas (CO2, O2, dimethylsulfide) dynamics in spring Antarctic fast ice, Limnol. Oceanogr., 52, 1367–1379, https://doi.org/10.4319/lo.2007.52.4.1367, 2007.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res., 34, 1733–1743, 1987.
Dickson, A. G. and Millero, F. J.: Corrigenda, Deep-Sea Res., 36, p. 983, 1989.
Dieckmann, G. S., Nehrke, G., Papadimitriou, S., Göttlicher, J., Steininger, R., Kennedy, H., Wolf-Gladrow, D., and Thomas, S. N.: Calcium carbonate as ikaite crystals in Antarctic sea ice, Geophys. Res. Lett., 35, L08501, https://doi.org/10.1029/2008GL033540, 2008.
Dieckmann, G. S., Nehrke, G., Uhlig, C., Göttlicher, J., Gerland, S., Granskog, M. A., and Thomas, D. N.: Brief Communication: Ikaite (CaCO3·6H2O) discovered in Arctic sea ice, The Cryosphere, 4, 227–230, https://doi.org/10.5194/tc-4-227-2010, 2010.
Drucker, R., Martin, S., and Kwok, R.: Sea ice production and export from coastal polynyas in the Weddell and Ross Seas, Geophys. Res. Lett., 38, L17502, https://doi.org/10.1029/2011GL048668, 2011.
Ehn, J. K., Hwang, B. J., Galley, R., and Barber D. G.: Investigations of newly formed sea ice in the Cape Bathurst polynya: 1. Structural, physical, and optical properties, J. Geophys. Res., 112, C05002, https://doi.org/10.1029/2006JC003702, 2007.
Geilfus, N.-X., Carnat, G., Papakyriakou, T., Tison, J.-L., Else, B., Thomas, H., Shadwick, E., and Delille, B.: Dynamics of pCO2 and related air-sea CO2 fluxes in the Arctic coastal zone (Amundsen Gulf, Beaufort Sea), J. Geophys. Res., 117, C00G10, https://doi.org/10.1029/2011JC007118, 2012.
Geilfus, N.-X., Carmat, G. Dieckman, G. S., Halden, N., Nehrke, G., Papakyriakou, T., Tison, J.-L., and Delille, B.: First estimates of the contribution of CaCO3 precipitation to the release of CO2 to the atmosphere during young sea ice growth. J. Geophys. Res. Ocean, 118, 1–12, https://doi.org/10.1029/2012JC007980, 2013.
Golden, K. M., Ackley, S. F., and Lytle, V. I.: The percolation phase transition in sea ice, Science, 282, 2238–2241, 1998.
Golden, K. M., Eicken, H., Heaton, A. L., Miner, J., Pringle, D. J., and Zhu, J.: Thermal evolution of permeability and microstructure in sea ice, Geophys. Res. Lett. 34, L16501, https://doi.org/10.1029/2007GL030447, 2007.
Hansen, J. W., Thamdrup, B., and Jørgensen, B. B.: Anoxic incubation of sediment in gas tight plastic bags: A method for biogeo- chemical process studies, Mar. Ecol. Prog. Ser., 208, 273–282, 2000.
Haraldsson, C., Anderson, L. G., Hasselöv, M., Hult, S., and Olsson, K.: Rapid, high-precision potentiometric titration of alkalinity in ocean and sediment pore water, Deep-Sea Res. Pt. I, 44, 2031–2044, 1997.
Hare, A. A., Wang, F., Barber, D., Geilfus, N.-X., Galley, R., and Rysgaard, S.: pH evolution in sea ice grown at an outdoor experimental facility, Mar. Chem., in press, 2013.
Hesse, K. F. and Küppers, H.: Refinement of the structure of Ikaite, CaCO3\textbullet 6H2O, Z. Krystallographie, 163, 227–231, 1983.
Johnson, K. M., Sieburth, J. M., Williams, P. J., and Brändström, L.: Coulometric total carbon dioxide analysis for marine studies: Automation and calibration, Mar. Chem., 21, 117–133, 1987.
Junge, K., Krembs, C., Deming, J., Stierle, A., and Eicken, H.: A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann. Glaciol., 33, 304–310, 2001.
Krembs, C., Eicken, H., and Deming, J. W.: Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic, Proc. Natl. Acad. Sci., USA, 108, 3653–3658, 2011.
Leppäranta, M. and Manninen, T.: The brine and gas content of sea ice with attention to low salinities and high temperatures, Finnish Institute of Marine Research Internal Report, Helsinki, Finland, 15 pp., 1988.
Lewis, E. and Wallace D.: The program CO2SYS.EXE can be downloaded at: http://cdiac.esd.ornl.gov/oceans/co2rprtnbk.html (last access: 24 September 2012), 2012.
Marion, G. M., Farren, R. E., and Komrowski, A. J.: Alternative pathways for seawater freezing, Cold Reg. Sci. Technol., 29, 259–266, 1999.
Marion, G. M., Mironenko, M. V., and Roberts, M. W.: FREZCHEM: A geochemical model for cold aqueous solutions, Comput. Geosci., 36, 10–15, 2010.
McLaren, A. J., Banks, H. T., Durman, C. F., Gregory, J. M., Johns, T. C., Keen, A. B., Ridley, J. K., Roberts, M. J., Lipscomb, W. H., Connolley, W. M., and Laxon, S. W.: Evaluation of the sea ice simulation in a new coupled atmospheric-ocean climate model (HadGEM1), J. Geophys. Res., 111, C12014, https://doi.org/10.1029/2005JC003033, 2006.
Mehrbach, C., Culberson, H., Hawley, J. E., and Pytkowicz, R. M.: Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907, 1973.
Miller, L. A., Papakyriakou, T. N. Collins, R. E., Deming, J. W., Ehn, J., Macdonald, R. W., Mucci, A., Owens, O., Raudsepp, M., and Sutherland, N.: Carbon dynamics in sea ice: A winter flux time series, J. Geophys. Res., 116, C02028, https://doi.org/10.1029/2009JC006058, 2011.
Mucci, A., B. Lansard, L. A. Miller, and Papakyriakou, T. N.: CO2 fluxes across the air-sea interface in the southeastern Beaufort Sea: Ice-free period, J. Geophys. Res., 115, C04003, https://doi.org/10.1029/2009JC005330, 2010.
Nedashkovsky, A. P., Khvedynich, S. V., and Petovsky, T. V.: Alkalinity of sea ice in the high-latitudinal arctic according to the surveys performed at north pole drifting station 34 and characterization of the role of the arctic in the CO2 exchange, Oceanology, 49, 55–63, https://doi.org/10.1134/s000143700901007x, 2009.
Notz, D. and Worster, M. G.: Desalination processes of sea ice revisited, J. Geophys. Res., 114, C05006, https://doi.org/10.1029/2008JC004885, 2009.
Papadimitriou, S., Kennedy, H., Norman, L., Kennedy, D. P., Dieckmann, G. S., and Thomas, D. T.: The effect of biological activity, CaCO3 mineral dynamics, and CO2 degassing in the inorganic carbon cycle in sea ice in late winter-early spring in the Weddell Sea, Antarctica, J. Geophys. Res., 117, C08011, https://doi.org/10.1029/2012JC008058, 2012.
Papakyriakou, T. N., Rysgaard, S., Geilfus, N. X., Pucko, M., Glud, R. N., Sejr, M. K., and Barber, D.: Seasonal variation in the carbon budget of a sea-ice dominated fjord system: Young Sound, Greenland, in preparation, 2013.
Pedersen, J. T. P., Kaufmann, L. H., Kroon, A., and Jakobsen, B. H.: The northeast Greenland Sirius Water Polynya dynamics and variability inferred from satellite imagery, Geogr. Tidsskr., 110, 131–142, 2010.
Rysgaard, S. and Glud, R. N.: Carbon cycling in Arctic marine ecosystems: Case study – Young Sound, Medd Greenland, Bioscience, 58, 216 pp., 2007.
Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J., and Christensen, P. B.: Inorganic carbon transport during sea ice growth and decay: a carbon pump in polar seas, J. Geophys. Res., 112, C03016, https://doi.org/10.1029/2006JC003572, 2007.
Rysgaard, S., Glud, R. N., Sejr, M. K., Blicher, M. E., and Stahl, H. J.: Denitrification activity and oxygen dynamics in Arctic sea ice, Polar Biol., 31, 527–537, 2008.
Rysgaard, S., Bendtsen, J. B., Pedersen, L. T., Ramløv, H., and Glud, R. N.: Increased CO2 uptake due to sea-ice growth and decay in the Nordic Seas, J. Geophys. Res., 114, C09011, https://doi.org/10.1029/2008JC005088, 2009.
Rysgaard, S., Bendtsen, J., Delille, B., Dieckmann, G., Glud, R. N., Kennedy, H., Mortensen, J., Papadimitriou, S., Thomas, D., and Tison, J.-L.: Sea ice contribution to air-sea CO2 exchange in the Arctic and Southern Oceans, Tellus B, 63, 823–830, https://doi.org/10.1111/j.1600-0889.2011.00571.x, 2011.
Rysgaard, S., Glud, R. N., Lennert, K., Cooper, M., Halden, N., Leakey, R. J. G., Hawthorne, F. C., and Barber, D.: Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters, The Cryosphere, 6, 901–908, https://doi.org/10.5194/tc-6-901-2012, 2012.
Sejr, M. K., Krause-Jensen, D., Rysgaard, S., Sørensen, L. L., Christensen, P. B., and Glud, R. N.: Air-sea flux of CO2 in arctic coastal waters influenced by glacial melt water and sea ice, Tellus 63B, 815–822, https://doi.org/10.1111/j.1600-0889.2011.00540.x, 2011.
Tamura, T. and Ohshima, K. I.: Mapping of sea ice production in the Arctic coastal polynyas, J. Geophys. Res., 116, C07030, https://doi.org/10.1029/2010JC006586, 2011.
Unesco tech. papers in the marine science no. 28. Eight report. Joint panel on oceanographis tables and standards, Annex 6: Freezing point of seawater, edited by: Millero, F. J., 29–35, 1978.
Vinje, T.: Fram Strait ice fluxes and atmospheric circulation: 1950–2000, J. Climate, 14, 3508–3517, 2001.
Weeks, W. F. and Ackley, S. F.: The growth, structure and properties of sea ice, in: The Geophysics of Sea Ice, edited by: Untersteiner, N., Plenum, New York, 1986.
Worster, M. G. and Wettlaufer, J. S.: Natural convection, solute trapping, and channel formation during solidification of seawater, J. Phys. Chem. B, 101, 6132–6136, 1997.