Articles | Volume 7, issue 2
https://doi.org/10.5194/tc-7-395-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-7-395-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Grounding line transient response in marine ice sheet models
A. S. Drouet
UJF- Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE), UMR 5183, Grenoble, 38041, France
D. Docquier
Laboratoire de Glaciologie, Université Libre de Bruxelles, CP160/03, Av F. Roosevelt 50, 1050 Brussels, Belgium
G. Durand
UJF- Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE), UMR 5183, Grenoble, 38041, France
R. Hindmarsh
British Antarctic Survey, Natural Environment Research Council, Madingley Road, Cambridge CB3 0ET, UK
F. Pattyn
Laboratoire de Glaciologie, Université Libre de Bruxelles, CP160/03, Av F. Roosevelt 50, 1050 Brussels, Belgium
O. Gagliardini
UJF- Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE), UMR 5183, Grenoble, 38041, France
Institut Universitaire de France, Paris, France
T. Zwinger
CSC-IT Center for Science Ltd., Espoo, Finland
Viewed
Total article views: 5,699 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 18 Sep 2012)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,606 | 1,856 | 237 | 5,699 | 244 | 210 |
- HTML: 3,606
- PDF: 1,856
- XML: 237
- Total: 5,699
- BibTeX: 244
- EndNote: 210
Total article views: 4,814 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Mar 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,190 | 1,411 | 213 | 4,814 | 220 | 202 |
- HTML: 3,190
- PDF: 1,411
- XML: 213
- Total: 4,814
- BibTeX: 220
- EndNote: 202
Total article views: 885 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 18 Sep 2012)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
416 | 445 | 24 | 885 | 24 | 8 |
- HTML: 416
- PDF: 445
- XML: 24
- Total: 885
- BibTeX: 24
- EndNote: 8
Cited
25 citations as recorded by crossref.
- Why marine ice sheet model predictions may diverge in estimating future sea level rise F. Pattyn & G. Durand 10.1002/grl.50824
- Resolution-dependent performance of grounding line motion in a shallow model compared with a full-Stokes model according to the MISMIP3d intercomparison J. Feldmann et al. 10.3189/2014JoG13J093
- Brief communication: Impact of mesh resolution for MISMIP and MISMIP3d experiments using Elmer/Ice O. Gagliardini et al. 10.5194/tc-10-307-2016
- Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise A. Robel et al. 10.1073/pnas.1904822116
- A 3-D coupled ice sheet – sea level model applied to Antarctica through the last 40 ky N. Gomez et al. 10.1016/j.epsl.2013.09.042
- Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1) X. Asay-Davis et al. 10.5194/gmd-9-2471-2016
- Grounding-line flux formula applied as a flux condition in numerical simulations fails for buttressed Antarctic ice streams R. Reese et al. 10.5194/tc-12-3229-2018
- A full Stokes subgrid scheme in two dimensions for simulation of grounding line migration in ice sheets using Elmer/ICE (v8.3) G. Cheng et al. 10.5194/gmd-13-2245-2020
- Thwaites Glacier grounding-line retreat: influence of width and buttressing parameterizations D. Docquier et al. 10.3189/2014JoG13J117
- Reducing uncertainties in projections of Antarctic ice mass loss G. Durand & F. Pattyn 10.5194/tc-9-2043-2015
- Response of Marine‐Terminating Glaciers to Forcing: Time Scales, Sensitivities, Instabilities, and Stochastic Dynamics A. Robel et al. 10.1029/2018JF004709
- Iceberg calving of Thwaites Glacier, West Antarctica: full-Stokes modeling combined with linear elastic fracture mechanics H. Yu et al. 10.5194/tc-11-1283-2017
- RIMBAY – a multi-approximation 3D ice-dynamics model for comprehensive applications: model description and examples M. Thoma et al. 10.5194/gmd-7-1-2014
- Sensitivity of grounding line dynamics to the choice of the friction law J. BRONDEX et al. 10.1017/jog.2017.51
- Modeling Northern Hemispheric Ice Sheet Dynamics, Sea Level Change, and Solid Earth Deformation Through the Last Glacial Cycle H. Han et al. 10.1029/2020JF006040
- Improvements in one-dimensional grounding-line parameterizations in an ice-sheet model with lateral variations (PSUICE3D v2.1) D. Pollard & R. DeConto 10.5194/gmd-13-6481-2020
- A high-resolution synthetic bed elevation grid of the Antarctic continent F. Graham et al. 10.5194/essd-9-267-2017
- Comparing Glacial‐Geological Evidence and Model Simulations of Ice Sheet Change since the Last Glacial Period in the Amundsen Sea Sector of Antarctica J. Johnson et al. 10.1029/2020JF005827
- Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change K. Bulthuis et al. 10.5194/tc-13-1349-2019
- On the reconstruction of palaeo-ice sheets: Recent advances and future challenges C. Stokes et al. 10.1016/j.quascirev.2015.07.016
- The role of internal climate variability in projecting Antarctica’s contribution to future sea-level rise C. Tsai et al. 10.1007/s00382-020-05354-8
- Sea level rise and submarine mass failures on open continental margins D. Smith et al. 10.1016/j.quascirev.2013.10.012
- Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison F. Pattyn et al. 10.3189/2013JoG12J129
- Upper limit for sea level projections by 2100 S. Jevrejeva et al. 10.1088/1748-9326/9/10/104008
- Basal topographic controls on the stability of the West Antarctic ice sheet: lessons from Foundation Ice Stream K. Huybers et al. 10.1017/aog.2017.9
23 citations as recorded by crossref.
- Why marine ice sheet model predictions may diverge in estimating future sea level rise F. Pattyn & G. Durand 10.1002/grl.50824
- Resolution-dependent performance of grounding line motion in a shallow model compared with a full-Stokes model according to the MISMIP3d intercomparison J. Feldmann et al. 10.3189/2014JoG13J093
- Brief communication: Impact of mesh resolution for MISMIP and MISMIP3d experiments using Elmer/Ice O. Gagliardini et al. 10.5194/tc-10-307-2016
- Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise A. Robel et al. 10.1073/pnas.1904822116
- A 3-D coupled ice sheet – sea level model applied to Antarctica through the last 40 ky N. Gomez et al. 10.1016/j.epsl.2013.09.042
- Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1) X. Asay-Davis et al. 10.5194/gmd-9-2471-2016
- Grounding-line flux formula applied as a flux condition in numerical simulations fails for buttressed Antarctic ice streams R. Reese et al. 10.5194/tc-12-3229-2018
- A full Stokes subgrid scheme in two dimensions for simulation of grounding line migration in ice sheets using Elmer/ICE (v8.3) G. Cheng et al. 10.5194/gmd-13-2245-2020
- Thwaites Glacier grounding-line retreat: influence of width and buttressing parameterizations D. Docquier et al. 10.3189/2014JoG13J117
- Reducing uncertainties in projections of Antarctic ice mass loss G. Durand & F. Pattyn 10.5194/tc-9-2043-2015
- Response of Marine‐Terminating Glaciers to Forcing: Time Scales, Sensitivities, Instabilities, and Stochastic Dynamics A. Robel et al. 10.1029/2018JF004709
- Iceberg calving of Thwaites Glacier, West Antarctica: full-Stokes modeling combined with linear elastic fracture mechanics H. Yu et al. 10.5194/tc-11-1283-2017
- RIMBAY – a multi-approximation 3D ice-dynamics model for comprehensive applications: model description and examples M. Thoma et al. 10.5194/gmd-7-1-2014
- Sensitivity of grounding line dynamics to the choice of the friction law J. BRONDEX et al. 10.1017/jog.2017.51
- Modeling Northern Hemispheric Ice Sheet Dynamics, Sea Level Change, and Solid Earth Deformation Through the Last Glacial Cycle H. Han et al. 10.1029/2020JF006040
- Improvements in one-dimensional grounding-line parameterizations in an ice-sheet model with lateral variations (PSUICE3D v2.1) D. Pollard & R. DeConto 10.5194/gmd-13-6481-2020
- A high-resolution synthetic bed elevation grid of the Antarctic continent F. Graham et al. 10.5194/essd-9-267-2017
- Comparing Glacial‐Geological Evidence and Model Simulations of Ice Sheet Change since the Last Glacial Period in the Amundsen Sea Sector of Antarctica J. Johnson et al. 10.1029/2020JF005827
- Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change K. Bulthuis et al. 10.5194/tc-13-1349-2019
- On the reconstruction of palaeo-ice sheets: Recent advances and future challenges C. Stokes et al. 10.1016/j.quascirev.2015.07.016
- The role of internal climate variability in projecting Antarctica’s contribution to future sea-level rise C. Tsai et al. 10.1007/s00382-020-05354-8
- Sea level rise and submarine mass failures on open continental margins D. Smith et al. 10.1016/j.quascirev.2013.10.012
- Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison F. Pattyn et al. 10.3189/2013JoG12J129
Saved (final revised paper)
Saved (preprint)
Latest update: 18 Nov 2024