Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.713 IF 4.713
  • IF 5-year value: 4.927 IF 5-year
    4.927
  • CiteScore value: 8.0 CiteScore
    8.0
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 2.353 SJR 2.353
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 53 h5-index 53
Volume 7, issue 5
The Cryosphere, 7, 1361–1374, 2013
https://doi.org/10.5194/tc-7-1361-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 7, 1361–1374, 2013
https://doi.org/10.5194/tc-7-1361-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Sep 2013

Research article | 05 Sep 2013

The geomorphological effect of cornice fall avalanches in the Longyeardalen valley, Svalbard

M. Eckerstorfer1,2, H. H. Christiansen1, L. Rubensdotter3, and S. Vogel1 M. Eckerstorfer et al.
  • 1Arctic Geology Department, University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
  • 2Earth Observation, Norut, P.O. Box 6434, Tromsø Science Park, 9294 Tromsø, Norway
  • 3Geological Survey of Norway, P.O. Box 6315, Sluppen, 7491 Trondheim, Norway

Abstract. The study of snow avalanches and their geomorphological effect in the periglacial parts of the cryosphere is important for enhanced geomorphological process understanding as well as hazard-related studies. Only a few field studies, and particularly few in the High Arctic, have quantified avalanche sedimentation. Snow avalanches are traditionally ranked behind rockfall in terms of their significance for mass-wasting processes of rockslopes. Cornice fall avalanches are at present the most dominant snow avalanche type at two slope systems, called Nybyen and Larsbreen, in the valley Longyeardalen in central Svalbard. Both slope systems are on northwest-facing lee slopes underneath a large summit plateau, with annual cornices forming on the top. High-frequency and magnitude cornice fall avalanching is observed by daily automatic time-lapse photography. In addition, rock debris sedimentation by cornice fall avalanches was measured directly in permanent sediment traps or by snow inventories. The results from a maximum of seven years of measurements in a total of 13 catchments show maximum mean rock debris sedimentation rates ranging from 8.2 to 38.7 kg m−2 at Nybyen, and from 0.8 to 55.4 kg m−2 at Larsbreen. Correspondingly, avalanche fan surfaces accreted from 2.6 to 8.8 mm yr−1 at Nybyen, and from 0.2 to 13.9 mm yr−1 at Larsbreen. This comparably efficient rockslope mass wasting is due to collapsing cornices producing cornice fall avalanches containing large amounts of rock debris throughout the entire winter. The rock debris of different origin stems from the plateau crests, the adjacent free rock face and the transport pathway, accumulating distinct avalanche fans at both slope systems. Cornice fall avalanche sedimentation also contributed to the development of a rock glacier at the Larsbreen site during the Holocene. We have recorded present maximum rockwall retreat rates of 0.9 mm yr−1 at Nybyen, but as much as 6.7 mm yr−1 at Larsbreen, while average Holocene rockwall retreat rates of 1.1 mm yr−1 at Nybyen have been determined earlier. As cornice fall avalanches are the dominant type of avalanche in central Svalbard, the related geomorphological effect is assumed to be of significance at periglacial landscape scale. A climate-induced shift in prevailing winter wind direction could change the rockslope sedimentation effectively by changing the snow avalanche activity.

Publications Copernicus
Download
Citation