Articles | Volume 19, issue 11
https://doi.org/10.5194/tc-19-5939-2025
https://doi.org/10.5194/tc-19-5939-2025
Research article
 | 
20 Nov 2025
Research article |  | 20 Nov 2025

Subglacial hydrology regulates oscillations in marine ice streams

Marianne Haseloff, Ian J. Hewitt, and Richard F. Katz

Related authors

Models of buoyancy-driven dykes using continuum plasticity or fracture mechanics: a comparison
Yuan Li, Timothy Davis, Adina E. Pusok, and Richard F. Katz
Geosci. Model Dev., 18, 6219–6238, https://doi.org/10.5194/gmd-18-6219-2025,https://doi.org/10.5194/gmd-18-6219-2025, 2025
Short summary
Groundwater dynamics beneath a marine ice sheet
Gabriel J. Cairns, Graham P. Benham, and Ian J. Hewitt
The Cryosphere, 19, 3725–3747, https://doi.org/10.5194/tc-19-3725-2025,https://doi.org/10.5194/tc-19-3725-2025, 2025
Short summary
Viscoelastic mechanics of tidally induced lake drainage in the grounding zone
Hanwen Zhang, Richard F. Katz, and Laura A. Stevens
The Cryosphere, 19, 2087–2103, https://doi.org/10.5194/tc-19-2087-2025,https://doi.org/10.5194/tc-19-2087-2025, 2025
Short summary
A model of the weathering crust and microbial activity on an ice-sheet surface
Tilly Woods and Ian J. Hewitt
The Cryosphere, 17, 1967–1987, https://doi.org/10.5194/tc-17-1967-2023,https://doi.org/10.5194/tc-17-1967-2023, 2023
Short summary

Cited articles

Alley, R. B., Blankenship, D. D., Bentley, C. R., and Rooney, S. T.: Deformation of till beneath ice stream B, West Antarctica, Nature, 322, 57–59, https://doi.org/10.1038/322057a0, 1986. a, b
Alley, R. B., Blankenship, D., Bentley, C., and Rooney, S.: Till beneath ice stream B, 3, Till deformation: Evidence and implications, J. Geophys. Res., 92, 8921–8930, https://doi.org/10.1029/JB092iB09p08921, 1987. a
Anandakrishnan, S. and Alley, R. B.: Stagnation of ice stream C, West Antarctica by water piracy, Geophys. Res. Lett., 24, 265–268, https://doi.org/10.1029/96GL04016, 1997. a, b
Anandakrishnan, S., Blankenship, D. D., Alley, R. B., and Stoffa, P. L.: Influence of subglacial geology on the position of a West Antarctic ice stream from seismic observations, Nature, 394, 62–65, https://doi.org/10.1038/27889, 1998. a
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a
Download
Short summary
We combine models for marine ice sheets (which terminate in the ocean) and water flux at the ice–bed interface. The coupled system evolves dynamically due to a positive feedback between ice flow, heat dissipation at the ice stream bed, and basal lubrication. Our results show that, depending on the hydraulic properties of the bed, distinct dynamic regimes can be identified. These regimes include steady streaming, hydraulically controlled oscillations, and thermally controlled oscillations.
Share