Articles | Volume 19, issue 11
https://doi.org/10.5194/tc-19-5939-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-5939-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Subglacial hydrology regulates oscillations in marine ice streams
Department of Geoscience, University of Wisconsin–Madison, Madison, WI 53706, USA
Ian J. Hewitt
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
Richard F. Katz
Department of Earth Sciences, University of Oxford, Oxford OX1 3QR, UK
Related authors
No articles found.
Yuan Li, Timothy Davis, Adina E. Pusok, and Richard F. Katz
Geosci. Model Dev., 18, 6219–6238, https://doi.org/10.5194/gmd-18-6219-2025, https://doi.org/10.5194/gmd-18-6219-2025, 2025
Short summary
Short summary
Magmatic dykes transport magma to the Earth's surface, sometimes causing eruptions. We advanced a model of dyking, treating it as plastic deformation in a porous medium, unlike the classic model that treats dykes as fractures in elastic solids. Comparing the two, we found the plastic model aligns with the fracture model in dyke speed and energy consumption, despite quantitative differences. This new method could be a powerful tool for understanding volcanic processes during tectonic activity.
Gabriel J. Cairns, Graham P. Benham, and Ian J. Hewitt
The Cryosphere, 19, 3725–3747, https://doi.org/10.5194/tc-19-3725-2025, https://doi.org/10.5194/tc-19-3725-2025, 2025
Short summary
Short summary
Thick layers of porous rock known as sedimentary basins lie underneath many glaciers in Antarctica that flow into the sea. These layers contain large amounts of groundwater, some of which is seawater. We use a mathematical model to predict how groundwater flows through these basins, finding that seawater can become trapped due to changes in the ice sheet over time. We also predict where water flows out of (or into) these basins, and we discuss possible implications for the glacier.
Hanwen Zhang, Richard F. Katz, and Laura A. Stevens
The Cryosphere, 19, 2087–2103, https://doi.org/10.5194/tc-19-2087-2025, https://doi.org/10.5194/tc-19-2087-2025, 2025
Short summary
Short summary
In Antarctica, supraglacial lakes often form near grounding lines due to surface melting. We model viscoelastic tidal flexure in these regions to assess its contribution to lake drainage via hydrofracturing. Results show that tidal flexure and lake-water pressure jointly control drainage near unconfined grounding lines. Sensitivity analysis indicates the importance of the Maxwell time of ice in modulating the tidal response.
Tilly Woods and Ian J. Hewitt
The Cryosphere, 17, 1967–1987, https://doi.org/10.5194/tc-17-1967-2023, https://doi.org/10.5194/tc-17-1967-2023, 2023
Short summary
Short summary
Solar radiation causes melting at and just below the surface of the Greenland ice sheet, forming a porous surface layer known as the weathering crust. The weathering crust is home to many microbes, and the growth of these microbes is linked to the melting of the weathering crust and vice versa. We use a mathematical model to investigate what controls the size and structure of the weathering crust, the number of microbes within it, and its sensitivity to climate change.
Cited articles
Alley, R. B., Blankenship, D. D., Bentley, C. R., and Rooney, S. T.: Deformation of till beneath ice stream B, West Antarctica, Nature, 322, 57–59, https://doi.org/10.1038/322057a0, 1986. a, b
Alley, R. B., Blankenship, D., Bentley, C., and Rooney, S.: Till beneath ice stream B, 3, Till deformation: Evidence and implications, J. Geophys. Res., 92, 8921–8930, https://doi.org/10.1029/JB092iB09p08921, 1987. a
Anandakrishnan, S. and Alley, R. B.: Stagnation of ice stream C, West Antarctica by water piracy, Geophys. Res. Lett., 24, 265–268, https://doi.org/10.1029/96GL04016, 1997. a, b
Anandakrishnan, S., Blankenship, D. D., Alley, R. B., and Stoffa, P. L.: Influence of subglacial geology on the position of a West Antarctic ice stream from seismic observations, Nature, 394, 62–65, https://doi.org/10.1038/27889, 1998. a
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a
Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constantinescu, E. M., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W. D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M. G., Kong, F., Kruger, S., May, D. A., McInnes, L. C., Mills, R. T., Mitchell, L., Munson, T., Roman, J. E., Rupp, K., Sanan, P., Sarich, J., Smith, B. F., Zampini, S., Zhang, H., Zhang, H., and Zhang, J.: PETSc Web page, https://petsc.org/ (last access: 14 October 2025), 2023. a
Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., and King, M. A.: Short-term variability in Greenland Ice Sheet motion forced by time-varying meltwater drainage: Implications for the relationship between subglacial drainage system behavior and ice velocity, J. Geophys. Res.-Earth Surf., 117, https://doi.org/10.1029/2011JF002220, 2012. a
Benn, D. I., Fowler, A. C., Hewitt, I., and Sevestre, H.: A general theory of glacier surges, J. Glaciol., 65, 701–716, 2019. a
Benn, D. I., Hewitt, I. J., and Luckman, A. J.: Enthalpy balance theory unifies diverse glacier surge behaviour, Ann. Glaciol., 63, 88–94, 2022. a
Bentley, C. R., Lord, N., and Liu, C.: Radar reflections reveal a wet bed beneath stagnant Ice Stream C and a frozen bed beneath ridge BC, West Antarctica, J. Glaciol., 44, 149–156, 1998. a
Bindschadler, R. and Vornberger, P.: Changes in the West Antarctic Ice Sheet Since 1963 from Declassified Satellite Photography, Science, 279, 689–692, https://doi.org/10.1126/science.279.5351.689, 1998. a
Blankenship, D. D., Bentley, C. R., Rooney, S. T., and Alley, R. B.: Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream, Nature, 322, 54–57, https://doi.org/10.1038/322054a0, 1986. a
Blankenship, D. D., Bentley, C. R., Rooney, S. T., and Alley, R. B.: Till beneath ice stream B. I – Properties derived from seismic travel times. II — Structure and continuity. III – Till deformation - Evidence and implications. IV – A coupled ice-till flow model, J. Geophys. Res., 92, 8903–8940, https://doi.org/10.1029/JB092iB09p08903, 1987. a
Bougamont, M., Tulaczyk, S., and Joughin, I.: Numerical investigations of the slow-down of Whillans Ice Stream, West Antarctica: is it shutting down like Ice Stream C?, Ann. Glaciol., 37, 239–246, https://doi.org/10.3189/172756403781815555, 2003. a
Bougamont, M., Price, S., Christoffersen, P., and Payne, A.: Dynamic patterns of ice stream flow in a 3-D higher-order ice sheet model with plastic bed and simplified hydrology, J. Geophys. Res.-Earth Surf., 116, F04018, https://doi.org/10.1029/2011JF002025, 2011. a
Bougamont, M., Christoffersen, P., A L, H., Fitzpatrick, A., Doyle, S. H., and Carter, S. P.: Sensitive response of the Greenland Ice Sheet to surface melt drainage over a soft bed, Nat. Commun., 5, 1–9, https://doi.org/10.1038/ncomms6052, 2014. a
Brinkerhoff, D. J. and Johnson, J. V.: Dynamics of thermally induced ice streams simulated with a higher-order flow model, J. Geophys. Res., 120, 1743–1770, https://doi.org/10.1002/2015JF003499, 2015. a
Brondex, J., Gagliardini, O., Gillet-Chaulet, F., and Durand, G.: Sensitivity of grounding line dynamics to the choice of the friction law, J. Glaciol., 63, 854–866, https://doi.org/10.1017/jog.2017.51, 2017. a, b
Bueler, E. and Brown, J.: The shallow shelf approximation as a sliding law in a thermomechanically coupled ice sheet model, J. Geophys. Res., 114, F03008, https://doi.org/10.1029/2008JF001179, 2009. a
Bueler, E. and van Pelt, W.: Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model version 0.6, Geosci. Model Dev., 8, 1613–1635, https://doi.org/10.5194/gmd-8-1613-2015, 2015. a
Catania, G., Hulbe, C., Conway, H., Scambos, T. A., and Raymond, C. F.: Variability in the mass flux of the Ross ice streams, West Antarctica, over the last millennium, J. Glaciol., 58, 741–752, https://doi.org/10.3189/2012JoG11J219, 2012. a, b
Christian, J. E., Robel, A. A., and Catania, G.: A probabilistic framework for quantifying the role of anthropogenic climate change in marine-terminating glacier retreats, The Cryosphere, 16, 2725–2743, https://doi.org/10.5194/tc-16-2725-2022, 2022. a
Christoffersen, P. and Tulaczyk, S.: Response of subglacial sediments to basal freeze-on 1. Theory and comparison to observations from beneath the West Antarctic Ice Sheet, J. Geophys. Res., 108, 2222, https://doi.org/10.1029/2002JB001935, 2003. a
Clarke, G. K., Collins, S. G., and Thompson, D. E.: Flow, thermal structure, and subglacial conditions of a surge-type glacier, Canadian Journal of Earth Sciences, 21, 232–240, https://doi.org/10.1139/e84-024, 1984. a, b
Clarke, G. K. C.: Subglacial Processes, Annu. Rev. Earth Planet. Sci., 33, 247–276, 2005. a
Clarke, G. K. C., Nitsan, U., and Paterson, W. S. B.: Strain heating and creep instability in glaciers and ice sheets, Rev. Geophys., 15, 235–247, https://doi.org/10.1029/RG015i002p00235, 1977. a
Creyts, T. T. and Schoof, C. G.: Drainage through subglacial water sheets, J. Geophys. Res., 114, F04008, https://doi.org/10.1029/2008JF001215, 2009. a
Dow, C., Ross, N., Jeofry, H., Siu, K., and Siegert, M.: Antarctic basal environment shaped by high-pressure flow through a subglacial river system, Nat. Geosci., 15, 892–898, https://doi.org/10.1038/s41561-022-01059-1, 2022. a
Dupont, T. K. and Alley, R. B.: Assessment of the importance of ice-shelf buttressing to ice-sheet flow, Geophys. Res. Lett., 32, 4503, https://doi.org/10.1029/2004GL022024, 2005. a
Echelmeyer, K. A. and Harrison, W. D.: Ongoing margin migration of Ice Stream B, Antarctica, J. Glaciol., 45, 361–369, https://doi.org/10.3189/S0022143000001866, 1999. a
Ehrenfeucht, S., Rignot, E., and Morlighem, M.: Seawater Intrusion in the Observed Grounding Zone of Petermann Glacier Causes Extensive Retreat, Geophys. Res. Lett., 51, e2023GL107571, https://doi.org/10.1029/2023GL107571, 2024. a
Elsworth, C. W. and Suckale, J.: Rapid ice flow rearrangement induced by subglacial drainage in West Antarctica, Geophys. Res. Lett., 43, 11–697, https://doi.org/10.1002/2016GL070430, 2016. a
Engelhardt, H., Humphrey, N., Kamb, B., and Fahnestock, M.: Physical Conditions at the Base of a Fast Moving Antarctic Ice Stream, Science, 248, 57–59, https://doi.org/10.1126/science.248.4951.57, 1990. a
Feldmann, J. and Levermann, A.: From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the Parallel Ice Sheet Model, The Cryosphere, 11, 1913–1932, https://doi.org/10.5194/tc-11-1913-2017, 2017. a
Flowers, G. E.: Modelling water flow under glaciers and ice sheets, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471, https://doi.org/10.1098/rspa.2014.0907, 2015. a, b, c, d
Fowler, A., Murray, T., and Ng, F.: Thermally controlled glacier surging, J. Glaciol., 47, 527–538, https://doi.org/10.3189/172756501781831792, 2001. a
Fricker, H. A., Scambos, T., Bindschadler, R., and Padman, L.: An Active Subglacial Water System in West Antarctica Mapped from Space, Science, 315, 1544–1548, https://doi.org/10.1126/science.1136897, 2007. a
Gregov, T., Pattyn, F., and Arnst, M.: Grounding-line flux conditions for marine ice-sheet systems under effective-pressure- dependent and hybrid friction laws, J. Fluid Mech., 975, A6, https://doi.org/10.1017/jfm.2023.760, 2023. a
Gudmundsson, G. H.: Ice-shelf buttressing and the stability of marine ice sheets, The Cryosphere, 7, 647–655, https://doi.org/10.5194/tc-7-647-2013, 2013. a
Gudmundsson, G. H., Krug, J., Durand, G., Favier, L., and Gagliardini, O.: The stability of grounding lines on retrograde slopes, The Cryosphere, 6, 1497–1505, https://doi.org/10.5194/tc-6-1497-2012, 2012. a
Hager, A. O., Hoffman, M. J., Price, S. F., and Schroeder, D. M.: Persistent, extensive channelized drainage modeled beneath Thwaites Glacier, West Antarctica, The Cryosphere, 16, 3575–3599, https://doi.org/10.5194/tc-16-3575-2022, 2022. a
Harrison, W. D., Echelmeyer, K. A., and Larsen, C. F.: Measurement of temperature in a margin of Ice Stream B, Antarctica: implications for margin migration and lateral drag, J. Glaciol., 44, 615–624, 1998. a
Haseloff, M.: Modelling the migration of ice stream margins, Ph.D. thesis, The University of British Columbia, https://doi.org/10.14288/1.0166470, https://doi.org/10.14288/1.0166470, 2015. a
Haseloff, M.: C files for the paper “Subglacial hydrology regulates oscillations in marine ice streams”, Zenodo [code], https://doi.org/10.5446/10.5281/zenodo.15800031, 2025.
Haseloff, M. and Sergienko, O. V.: The effect of buttressing on grounding line dynamics, J. Glaciol., 64, 417–431, https://doi.org/10.1017/jog.2018.30, 2018. a, b
Haseloff, M. and Sergienko, O. V.: Effects of calving and submarine melting on steady states and stability of buttressed marine ice sheets, J. Glaciol., 68, 1149–1166, https://doi.org/10.1017/jog.2022.29, 2022. a
Haseloff, M., Schoof, C., and Gagliardini, O.: A boundary layer model for ice stream margins, J. Fluid Mech., 781, 353–387, https://doi.org/10.1017/jfm.2015.503, 2015. a
Haseloff, M., Hewitt, I. J., and Katz, R. F.: Englacial pore-water localises shear in temperate ice-stream margins, J. Geophys. Res.-Earth Surf., 124, 2521–2541, https://doi.org/10.1029/2019JF005399, 2019. a, b
Haseloff, M., Hewitt, I. J., and Katz, R. F.: Supplemental videos for the paper “Subglacial hydrology regulates oscillations in marine ice streams”, Logo TIB AV-Portal [video], https://doi.org/10.5446/s_1864, 2025. a, b, c
Haseloff, M., Schoof, C., and Gagliardini, O.: The role of subtemperate slip in thermally driven ice stream margin migration, The Cryosphere, 12, 2545–2568, https://doi.org/10.5194/tc-12-2545-2018, 2018. a
Helanow, C., Iverson, N. R., Woodard, J. B., and Zoet, L. K.: A slip law for hard-bedded glaciers derived from observed bed topography, Sci. Adv., 7, eabe7798, https://doi.org/10.1126/sciadv.abe7798, 2021. a
Hewitt, I. J.: Modelling distributed and channelized subglacial drainage: the spacing of channels, J. Glaciol., 57, 302–314, https://doi.org/10.3189/002214311796405951, 2011. a, b
Hindmarsh, R. C. A.: An observationally validated theory of viscous flow dynamics at the ice-shelf calving front, J. Glaciol., 58, 375–387, https://doi.org/10.3189/2012JoG11J206, 2012. a, b
Hulbe, C. and Fahnestock, M.: Century-scale discharge stagnation and reactivation of the Ross ice streams, West Antarctica, J. Geophys. Res., 112, F03S27, https://doi.org/10.1029/2006JF000603, 2007. a, b
Jenkins, A.: Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers, J. Phys. Oceanogr., 41, 2279–2294, 2011. a
Joughin, I., Tulaczyk, S., Bindschadler, R., and Price, S. F.: Changes in west Antarctic ice stream velocities: Observation and analysis, J. Geophys. Res., 107, 2289, https://doi.org/10.1029/2001JB001029, 2002. a
Joughin, I., Smith, B. E., and Schoof, C. G.: Regularized Coulomb Friction Laws for Ice Sheet Sliding: Application to Pine Island Glacier, Antarctica, Geophys. Res. Lett., 46, 4764–4771, https://doi.org/10.1029/2019GL082526, 2019. a
Katz, R., Knepley, M., Smith, B., Spiegelman, M., and Coon, E.: Numerical simulation of geodynamic processes with the Portable Extensible Toolkit for Scientific Computation, Phys. Earth Planet. In., 163, 52–68, https://doi.org/10.1016/j.pepi.2007.04.016, 2007. a
Kazmierczak, E., Sun, S., Coulon, V., and Pattyn, F.: Subglacial hydrology modulates basal sliding response of the Antarctic ice sheet to climate forcing, The Cryosphere, 16, 4537–4552, https://doi.org/10.5194/tc-16-4537-2022, 2022. a, b
Kazmierczak, E., Gregov, T., Coulon, V., and Pattyn, F.: A fast and simplified subglacial hydrological model for the Antarctic Ice Sheet and outlet glaciers, The Cryosphere, 18, 5887–5911, https://doi.org/10.5194/tc-18-5887-2024, 2024. a
Kyrke-Smith, T. M., Katz, R. F., and Fowler, A. C.: Subglacial hydrology and the formation of ice streams, P. Roy. Soc. A, 470, 20130494, https://doi.org/10.1098/rspa.2013.0494, 2014. a, b, c, d
Kyrke-Smith, T. M., Katz, R. F., and Fowler, A. C.: Subglacial hydrology as a control on emergence, scale, and spacing of ice streams, J. Geophys. Res., 120, 1501–1514, https://doi.org/10.1002/2015JF003505, 2015. a
Lambe, T. W. and Whitman, R. V.: Soil mechanics, vol. 10, John Wiley & Sons, ISBN 978-0-471-51192-2, 1991. a
Leeman, J. R., Valdez, R. D., Alley, R. B., Anandakrishnan, S., and Saffer, D. M.: Mechanical and hydrologic properties of Whillans Ice Stream till: Implications for basal strength and stick-slip failure, J. Geophys. Res.-Earth Surf., 121, 1295–1309, https://doi.org/10.1002/2016JF003863, 2016. a
MacAyeal, D. R.: Large-scale ice flow over a viscous basal sediment – Theory and application to ice stream B, Antarctica, J. Geophys. Res., 94, 4071–4087, https://doi.org/10.1029/JB094iB04p04071, 1989. a, b
MacAyeal, D. R.: Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events, Paleoceanography, 8, 775–784, https://doi.org/10.1029/93PA02200, 1993. a, b, c
Mantelli, E. and Schoof, C.: Ice sheet flow with thermally activated sliding. Part 2: the stability of subtemperate regions, P. Roy. Soc. A, 475, 20190411, https://doi.org/10.1098/rspa.2019.0411, 2019. a
Mantelli, E., Bertagni, M. B., and Ridolfi, L.: Stochastic ice stream dynamics, P. Natl. Acad. Sci. USA, 113, E4594–E4600, https://doi.org/10.1073/pnas.1600362113, 2016. a
Mantelli, E., Haseloff, M., and Schoof, C.: Ice sheet flow with thermally activated sliding. Part 1: the role of advection, P. Roy. Soc. A, 475, 20190410, https://doi.org/10.1098/rspa.2019.0410, 2019. a, b
Minchew, B. M. and Meyer, C. R.: Dilation of subglacial sediment governs incipient surge motion in glaciers with deformable beds, P. Roy. Soc. A, 476, 20200033, https://doi.org/10.1098/rspa.2020.0033, 2020. a
Murray, T., Strozzi, T., Luckman, A., Jiskoot, H., and Christakos, P.: Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions, J. Geophys. Res.-Sol. Ea., 108, https://doi.org/10.1029/2002JB001906, 2003. a, b
Ng, F. S. L.: Mathematical modelling of subglacial drainage and erosion, University of Oxford, Mathematical Institute, https://ora.ox.ac.uk/objects/uuid:346ee63c-a176-4381-aafb-980057dd6f5c (last access: 14 October 2025), 1998. a
Ng, F. S. L.: Coupled ice–till deformation near subglacial channels and cavities, J. Glaciol., 46, 580–598, https://doi.org/10.3189/172756500781832756, 2000a. a
Ng, F. S. L.: Canals under sediment-based ice sheets, Ann. Glaciol., 30, 146–152, https://doi.org/10.3189/172756400781820633, 2000b. a, b, c
Nick, F. M., Vieli, A., Howat, I. M., and Joughin, I.: Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus, Nat. Geosci., 2, 110–114, 2009. a
Pattyn, F.: A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes, J. Geophys. Res., 108, 2382, https://doi.org/10.1029/2002JB002329, 2003. a
Pattyn, F.: Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model, Earth Planet. Sc. Lett., 295, 451–461, https://doi.org/10.1016/j.epsl.2010.04.025, 2010. a
Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler, E., de Fleurian, B., Durand, G., Gagliardini, O., Gladstone, R., Goldberg, D., Gudmundsson, G. H., Huybrechts, P., Lee, V., Nick, F. M., Payne, A. J., Pollard, D., Rybak, O., Saito, F., and Vieli, A.: Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP, The Cryosphere, 6, 573–588, https://doi.org/10.5194/tc-6-573-2012, 2012. a
Payne, A. J. and Dongelmans, P. W.: Self-organization in the thermomechanical flow of ice sheets, J. Geophys. Res., 102, 12219–12234, https://doi.org/10.1029/97JB00513, 1997. a, b
Pegler, S. S.: The dynamics of confined extensional flows, J. Fluid Mech., 804, 24–57, 2016. a
Peters, L. E., Anandakrishnan, S., Alley, R. B., Winberry, J. P., Voigt, D. E., Smith, A. M., and Morse, D. L.: Subglacial sediments as a control on the onset and location of two Siple Coast ice streams, West Antarctica, J. Geophys. Res., 111, B01302, https://doi.org/10.1029/2005JB003766, 2006. a
Raymond, C. F.: Energy balance of ice streams, J. Glaciol., 46, 665–674, https://doi.org/10.3189/172756500781832701, 2000. a
Rempel, A. W.: A theory for ice-till interactions and sediment entrainment beneath glaciers, J. Geophys. Res.-Earth Surf., 113, F01013, https://doi.org/10.1029/2007JF000870, 2008. a
Rempel, A. W.: Effective stress profiles and seepage flows beneath glaciers and ice sheets, J. Glaciol., 55, 431–443, https://doi.org/10.3189/002214309788816713, 2009. a
Retzlaff, R. and Bentley, C. R.: Timing of stagnation of Ice Stream C, West Antarctica, from short-pulse radar studies of buried surface crevasses, J. Glaciol., 39, 553–561, https://doi.org/10.3189/S0022143000016440, 1993. a, b
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow of the Antarctic Ice Sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336, 2011. a
Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M. J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from 1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019. a
Rignot, E., Mouginot, J., Scheuchl, B., and Jeong, S.: Changes in Antarctic Ice Sheet Motion Derived From Satellite Radar Interferometry Between 1995 and 2022, Geophys. Res. Lett., 49, e2022GL100141, https://doi.org/10.1029/2022GL100141, 2022. a, b
Robel, A. A., Schoof, C., and Tziperman, E.: Persistence and variability of ice-stream grounding lines on retrograde bed slopes, The Cryosphere, 10, 1883–1896, https://doi.org/10.5194/tc-10-1883-2016, 2016. a
Robel, A. A., Roe, G. H., and Haseloff, M.: Response of Marine-Terminating Glaciers to Forcing: Time Scales, Sensitivities, Instabilities, and Stochastic Dynamics, J. Geophys. Res.-Earth Surf., 123, 2205–2227, https://doi.org/10.1029/2018JF004709, 2018. a
Robel, A. A., Wilson, E., and Seroussi, H.: Layered seawater intrusion and melt under grounded ice, The Cryosphere, 16, 451–469, https://doi.org/10.5194/tc-16-451-2022, 2022. a
Röthlisberger, H.: Water pressure in subglacial channels, J. Glaciol., 11, 177–203, https://doi.org/10.3189/S0022143000022188, 1972. a
Sayag, R. and Tziperman, E.: Spontaneous generation of pure ice streams via flow instability: Role of longitudinal shear stresses and subglacial till, J. Geophys. Res., 113, B05411, https://doi.org/10.1029/2007JB005228, 2008. a
Schoof, C.: A variational approach to ice stream flow, J. Fluid Mech., 556, 227–251, https://doi.org/10.1017/S0022112006009591, 2006. a
Schoof, C.: Marine ice-sheet dynamics. Part 1. The case of rapid sliding, J. Fluid Mech., 573, 27–55, https://doi.org/10.1017/S0022112006003570, 2007a. a, b
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, J. Geophys. Res., 112, https://doi.org/10.1029/2006JF000664, 2007b. a
Schoof, C.: Ice-sheet acceleration driven by melt supply variability, Nature, 468, 803–806, https://doi.org/10.1038/nature09618, 2010. a
Schoof, C.: Marine ice sheet stability, J. Fluid Mech., 698, 62–72, https://doi.org/10.1017/jfm.2012.43, 2012. a
Schoof, C. and Mantelli, E.: The role of sliding in ice stream formation, P. Roy. Soc. A, 477, 20200870, https://doi.org/10.1098/rspa.2020.0870, 2021. a, b
Schroeder, D. M., Blankenship, D. D., Young, D. A., Witus, A. E., and Anderson, J. B.: Airborne radar sounding evidence for deformable sediments and outcropping bedrock beneath Thwaites Glacier, West Antarctica, Geophys. Res. Lett., 41, 7200–7208, https://doi.org/10.1002/2014GL061645, 2014. a
Sergienko, O. and Haseloff, M.: “Stable” and “unstable” are not useful descriptions of marine ice sheets in the Earth's climate system, J. Glaciol., 69, 1483–1499, https://doi.org/10.1017/jog.2023.40, 2023. a, b
Sergienko, O. and Wingham, D.: Grounding line stability in a regime of low driving and basal stresses, J. Glaciol., 65, 833–849, https://doi.org/10.1017/jog.2019.53, 2019. a
Sergienko, O. and Wingham, D. J.: Diverse behaviors of marine ice sheets in response to temporal variability of the atmospheric and basal conditions, J. Glaciol., 70, p. e52, https://doi.org/10.1017/jog.2024.43, 2024. a
Sevestre, H., Benn, D. I., Luckman, A., Nuth, C., Kohler, J., Lindbäck, K., and Pettersson, R.: Tidewater glacier surges initiated at the terminus, J. Geophys. Res.-Earth Surf., 123, 1035–1051, https://doi.org/10.1029/2017JF004358, 2018. a
Shreve, R.: Movement of water in glaciers, J. Glaciol., 11, 205–214, 1972. a
Sommers, A., Rajaram, H., and Morlighem, M.: SHAKTI: Subglacial Hydrology and Kinetic, Transient Interactions v1.0, Geosci. Model Dev., 11, 2955–2974, https://doi.org/10.5194/gmd-11-2955-2018, 2018. a
Stephenson, S. N. and Bindschadler, R. A.: Observed velocity fluctuations on a major Antarctic ice stream, Nature, 334, 695–697, https://doi.org/10.1038/334695a0, 1988. a
Suckale, J., Platt, J. D., Perol, T., and Rice, J. R.: Deformation-induced melting in the margins of the West Antarctic ice streams, J. Geophys. Res., 119, 1004–1025, https://doi.org/10.1002/2013JF003008, 2014. a
Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., and Huybrechts, P.: Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage, Nature, 469, 521–524, https://doi.org/10.1038/nature09740, 2011. a
Terleth, Y., Bartholomaus, T. C., Enderlin, E., Mikesell, T. D., and Liu, J.: Glacier Surges and Seasonal Speedups Integrated Into a Single, Enthalpy-Based Model Framework, Geophys. Res. Lett., 51, e2024GL112514, https://doi.org/10.1029/2024GL112514, 2024. a
Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F.: Basal mechanics of Ice Stream B, West Antarctica I. Till mechanics, J. Geophys. Res., 105, 463–482, https://doi.org/10.1029/1999JB900329, 2000a. a, b, c
Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F.: Basal mechanics of Ice Stream B, West Antarctica II. Plastic-undrained-bed-model, J. Geophys. Res., 105, 463–482, https://doi.org/10.1029/1999JB900329, 2000b. a
Van der Veen, C. J.: Longitudinal Stresses and Basal Sliding: a Comparative Study, in: Dynamics of the West Antarctic Ice Sheet, edited by: Van der Veen, C. and Oerlemans, J., Dordrecht, Kluwer Academic Publishers, pp. 223–248, ISBN 9789400937451, 1987. a
van der Wel, N., Christoffersen, P., and Bougamont, M.: The influence of subglacial hydrology on the flow of Kamb Ice Stream, West Antarctica, J. Geophys. Res.-Earth Surf., 118, 97–110, https://doi.org/10.1029/2012JF002570, 2013. a
Warburton, K., Hewitt, D., and Neufeld, J.: Tidal grounding-line migration modulated by subglacial hydrology, Geophys. Res. Lett., 47, e2020GL089088, https://doi.org/10.1029/2020GL089088, 2020. a
Warburton, K. L. P., Hewitt, D. R., and Neufeld, J. A.: Shear dilation of subglacial till results in time-dependent sliding laws, P. Roy. Soc. A, 479, 20220536, https://doi.org/10.1098/rspa.2022.0536, 2023. a
Weertman, J.: On the sliding of glaciers, J. Glaciol., 3, 33–38, 1957. a
Zoet, L. K. and Iverson, N. R.: A slip law for glaciers on deformable beds, Science, 368, 76–78, https://doi.org/10.1126/science.aaz1183, 2020. a, b
Short summary
We combine models for marine ice sheets (which terminate in the ocean) and water flux at the ice–bed interface. The coupled system evolves dynamically due to a positive feedback between ice flow, heat dissipation at the ice stream bed, and basal lubrication. Our results show that, depending on the hydraulic properties of the bed, distinct dynamic regimes can be identified. These regimes include steady streaming, hydraulically controlled oscillations, and thermally controlled oscillations.
We combine models for marine ice sheets (which terminate in the ocean) and water flux at the...