Articles | Volume 19, issue 10
https://doi.org/10.5194/tc-19-5095-2025
https://doi.org/10.5194/tc-19-5095-2025
Research article
 | 
27 Oct 2025
Research article |  | 27 Oct 2025

Folding due to anisotropy in ice, from drill-core-scale cloudy bands to km-scale internal reflection horizons

Paul D. Bons, Yuanbang Hu, M.-Gema Llorens, Steven Franke, Nicolas Stoll, Ilka Weikusat, Julien Westhoff, and Yu Zhang

Viewed

Total article views: 957 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
854 78 25 957 71 26 38
  • HTML: 854
  • PDF: 78
  • XML: 25
  • Total: 957
  • Supplement: 71
  • BibTeX: 26
  • EndNote: 38
Views and downloads (calculated since 27 Jan 2025)
Cumulative views and downloads (calculated since 27 Jan 2025)

Viewed (geographical distribution)

Total article views: 957 (including HTML, PDF, and XML) Thereof 957 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 28 Oct 2025
Download
Short summary
What causes folds in ice layers from the km scale down to the scale visible in the drill core: buckle folding due to variations in viscosity between layers, or the effect of mechanical anisotropy of ice due to an alignment of the crystal-lattice planes? Power spectra of folds in ice, a biotite schist, and numerical simulations show that folding in ice is due to the anisotropy, as the folds are self-similar, meaning that there is no characteristic fold scale that would result from buckle folding.
Share