Articles | Volume 19, issue 10
https://doi.org/10.5194/tc-19-4969-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-4969-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An assessment of the disequilibrium of Alaska glaciers
Department of Earth and Space Sciences, University of Washington, Seattle, WA, US
Gerard H. Roe
Department of Earth and Space Sciences, University of Washington, Seattle, WA, US
John Erich Christian
Department of Geography, University of Oregon, Eugene, OR, US
Related authors
No articles found.
Samuel T. Kodama, Tamara Pico, Alexander A. Robel, John Erich Christian, Natalya Gomez, Casey Vigilia, Evelyn Powell, Jessica Gagliardi, Slawek Tulaczyk, and Terrence Blackburn
The Cryosphere, 19, 2935–2948, https://doi.org/10.5194/tc-19-2935-2025, https://doi.org/10.5194/tc-19-2935-2025, 2025
Short summary
Short summary
We predicted how sea level changed in the Ross Sea (Antarctica) due to glacial isostatic adjustment, or solid Earth ice sheet interactions, over the last deglaciation (20 000 years ago to present) and calculated how these changes in bathymetry impacted ice stream stability. Glacial isostatic adjustment shifts stability from where ice reached its maximum 20 000 years ago, at the continental shelf edge, to the modern grounding line today, reinforcing ice-age climate endmembers.
Andrew A. Margason, Alison M. Anders, Robert J. C. Conrick, and Gerard H. Roe
Earth Surf. Dynam., 11, 849–863, https://doi.org/10.5194/esurf-11-849-2023, https://doi.org/10.5194/esurf-11-849-2023, 2023
Short summary
Short summary
We examine differences in glacier extent in the Olympic Mountains, USA, where modern precipitation in east-facing valleys is only 50 % of that in west-facing valleys. During the Last Glacial Period, there were very small glaciers in the east and very large glaciers in the west. We use climate data and glacier models to show that the modern spatial pattern of precipitation is likely to have been similar during the past glaciation and may be sufficient to explain the asymmetry of glacier extent.
John Erich Christian, Alexander A. Robel, and Ginny Catania
The Cryosphere, 16, 2725–2743, https://doi.org/10.5194/tc-16-2725-2022, https://doi.org/10.5194/tc-16-2725-2022, 2022
Short summary
Short summary
Marine-terminating glaciers have recently retreated dramatically, but the role of anthropogenic forcing remains uncertain. We use idealized model simulations to develop a framework for assessing the probability of rapid retreat in the context of natural climate variability. Our analyses show that century-scale anthropogenic trends can substantially increase the probability of retreats. This provides a roadmap for future work to formally assess the role of human activity in recent glacier change.
Gerard H. Roe, John Erich Christian, and Ben Marzeion
The Cryosphere, 15, 1889–1905, https://doi.org/10.5194/tc-15-1889-2021, https://doi.org/10.5194/tc-15-1889-2021, 2021
Short summary
Short summary
The worldwide retreat of mountain glaciers and consequent loss of ice mass is one of the most obvious signs of a changing climate and has significant implications for the hydrology and natural hazards in mountain landscapes. Consistent with our understanding of the human role in temperature change, we demonstrate that the central estimate of the size of the human-caused mass loss is essentially 100 % of the observed loss. This assessment resolves some important inconsistencies in the literature.
Alan Huston, Nicholas Siler, Gerard H. Roe, Erin Pettit, and Nathan J. Steiger
The Cryosphere, 15, 1645–1662, https://doi.org/10.5194/tc-15-1645-2021, https://doi.org/10.5194/tc-15-1645-2021, 2021
Short summary
Short summary
We simulate the past 1000 years of glacier length variability using a simple glacier model and an ensemble of global climate model simulations. Glaciers with long response times are more likely to record global climate changes caused by events like volcanic eruptions and greenhouse gas emissions, while glaciers with short response times are more likely to record natural variability. This difference stems from differences in the frequency spectra of natural and forced temperature variability.
Cited articles
Allen, M. R., Dube, O. P., Solecki, W., Aragón-Durand, F., Cramer, W., Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez, R., Wairiu, M., and Zickfeld, K.: Framing and Context, in: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., Cambridge University Press, Cambridge, UK and New York, NY, USA, 49–92, https://doi.org/10.1017/9781009157940.003, 2018.
Armour, K. C. and Roe, G. H.: Climate commitment in an uncertain world, Geophysical Research Letters, 38, https://doi.org/10.1029/2010GL045850, 2011.
Ballinger, T. J., Bhatt, U. S., Bieniek, P. A., Brettschneider, B., Lader, R. T., Littell, J. S., Thoman, R. L., Waigl, C. F., Walsh, J. E., and Webster, M. A.: Alaska Terrestrial and Marine Climate Trends, 1957–2021, Journal of Climate, 36, 4375–4391, https://doi.org/10.1175/JCLI-D-22-0434.1, 2023.
Barth, A. M., Clark, P. U., Clark, J., Roe, G. H., Marcott, S. A., McCabe, A. M., Caffee, M. W., He, F., Cuzzone, J. K., and Dunlop, P.: Persistent millennial-scale glacier fluctuations in Ireland between 24 ka and 10 ka, Geology, 46, 151–154, https://doi.org/10.1130/G39796.1, 2018.
Benn, D. I. and Lehmkuhl, F.: Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments, Quaternary International, 65–66, 15–29, https://doi.org/10.1016/S1040-6182(99)00034-8, 2000.
Bieniek, P. A., Walsh, J. E., Thoman, R. L., and Bhatt, U. S.: Using Climate Divisions to Analyze Variations and Trends in Alaska Temperature and Precipitation, Journal of Climate, 27, 2800–2818, https://doi.org/10.1175/JCLI-D-13-00342.1, 2014.
Boyce, E. S., Motyka, R. J., and Truffer, M.: Flotation and retreat of a lake-calving terminus, Mendenhall Glacier, southeast Alaska, USA, J. Glaciol., 53, 211–224, https://doi.org/10.3189/172756507782202928, 2007.
Budd, W. F. and Jenssen, D.: Numerical modelling of glacier systems, in: Proceedings of the Moscow Symposium, August 1971, Snow and Ice Symposium, IAHS publ. 104, 257–291, 1975.
Christian, J. E., Koutnik, M., and Roe, G.: Committed retreat: controls on glacier disequilibrium in a warming climate, J. Glaciol., 64, 675–688, https://doi.org/10.1017/jog.2018.57, 2018.
Christian, J. E., Robel, A. A., and Catania, G.: A probabilistic framework for quantifying the role of anthropogenic climate change in marine-terminating glacier retreats, The Cryosphere, 16, 2725–2743, https://doi.org/10.5194/tc-16-2725-2022, 2022a.
Christian, J. E., Whorton, E., Carnahan, E., Koutnik, M., and Roe, G.: Differences in the transient responses of individual glaciers: a case study of the Cascade Mountains of Washington State, USA, J. Glaciol., 1–13, https://doi.org/10.1017/jog.2021.133, 2022b.
Dyurgerov, M., Meier, M. F., and Bahr, D. B.: A new index of glacier area change: a tool for glacier monitoring, Journal of Glaciology, 55, 710–716, https://doi.org/10.3189/002214309789471030, 2009.
Eyring, V., Gillett, N. P., Achutarao, K. M., Barimalala, R., Barreiro Parrillo, M., Bellouin, N., Cassou, C., Durack, P. J., Kosaka, Y., McGregor, S., Min, S.-K., Morgenstern, O., and Sun, Y.: Human influence on the climate system, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 423–552, https://doi.org/10.1017/9781009157896.001, 2021.
Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Fürst, J. J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P. W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink, T. J., Sanchez, O., Stentoft, P. A., Singh Kumari, S., van Pelt, W. J. J., Anderson, B., Benham, T., Binder, D., Dowdeswell, J. A., Fischer, A., Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G. H., Li, H., and Andreassen, L. M.: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment, The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, 2017.
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173, https://doi.org/10.1038/s41561-019-0300-3, 2019.
Farinotti, D., Brinkerhoff, D. J., Fürst, J. J., Gantayat, P., Gillet-Chaulet, F., Huss, M., Leclercq, P. W., Maurer, H., Morlighem, M., Pandit, A., Rabatel, A., Ramsankaran, R., Reerink, T. J., Robo, E., Rouges, E., Tamre, E., Van Pelt, W. J. J., Werder, M. A., Azam, M. F., Li, H., and Andreassen, L. M.: Results from the Ice Thickness Models Intercomparison eXperiment Phase 2 (ITMIX2), Front. Earth Sci., 8, 571923, https://doi.org/10.3389/feart.2020.571923, 2021.
Florentine, C., Harper, J., and Fagre, D.: Parsing complex terrain controls on mountain glacier response to climate forcing, Global and Planetary Change, 191, 103209, https://doi.org/10.1016/j.gloplacha.2020.103209, 2020.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, cryosphere, and sea level change, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.001, 2021.
Friedl, P., Seehaus, T., and Braun, M.: Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data, Earth Syst. Sci. Data, 13, 4653–4675, https://doi.org/10.5194/essd-13-4653-2021, 2021.
Goldberg, D. N., Heimbach, P., Joughin, I., and Smith, B.: Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration, The Cryosphere, 9, 2429–2446, https://doi.org/10.5194/tc-9-2429-2015, 2015.
Haeberli, W. and Hoelzle, M.: Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps, Ann. Glaciol., 21, 206–212, https://doi.org/10.3189/S0260305500015834, 1995.
Hansen, J., Russell, G., Lacis, A., Fung, I., Rind, D., and Stone, P.: Climate Response Times: Dependence on Climate Sensitivity and Ocean Mixing, Science, 229, 857–859, https://doi.org/10.1126/science.229.4716.857, 1985.
Hartl, L., Helfricht, K., Stocker-Waldhuber, M., Seiser, B., and Fischer, A.: Classifying disequilibrium of small mountain glaciers from patterns of surface elevation change distributions, J. Glaciol., 68, 253–268, https://doi.org/10.1017/jog.2021.90, 2022.
Haustein, K., Allen, M. R., Forster, P. M., Otto, F. E. L., Mitchell, D. M., Matthews, H. D., and Frame, D. J.: A real-time Global Warming Index, Sci. Rep., 7, 15417, https://doi.org/10.1038/s41598-017-14828-5, 2017.
Haustein, K., Otto, F. E. L., Venema, V., Jacobs, P., Cowtan, K., Hausfather, Z., Way, R. G., White, B., Subramanian, A., and Schurer, A. P.: A Limited Role for Unforced Internal Variability in Twentieth-Century Warming, Journal of Climate, 32, 4893–4917, https://doi.org/10.1175/JCLI-D-18-0555.1, 2019.
Hegerl, G. C., Brönnimann, S., Schurer, A., and Cowan, T.: The early 20th century warming: Anomalies, causes, and consequences, WIREs Climate Change, 9, e522, https://doi.org/10.1002/wcc.522, 2018.
Huybrechts, P., De Nooze, P., and Decleir, H.: Numerical Modelling of Glacier D'Argentiere and Its Historic Front Variations, in: Glacier Fluctuations and Climatic Change, Dordrecht, 373–389, https://doi.org/10.1007/978-94-015-7823-3_24, 1989.
Jakob, L. and Gourmelen, N.: Glacier Mass Loss Between 2010 and 2020 Dominated by Atmospheric Forcing, Geophysical Research Letters, 50, e2023GL102954, https://doi.org/10.1029/2023GL102954, 2023.
Jóhannesson, T., Raymond, C., and Waddington, E.: Time-scale for adjustment of glaciers to changes in mass balance, Journal of Glaciology, 35, 355–369, https://doi.org/10.1017/S002214300000928X, 1989.
Kaser, G.: Glacier-climate interaction at low latitudes, J. Glaciol., 47, 195–204, https://doi.org/10.3189/172756501781832296, 2001.
Knuth, F., Shean, D., Bhushan, S., Schwat, E., Alexandrov, O., McNeil, C., Dehecq, A., Florentine, C., and O'Neel, S.: Historical Structure from Motion (HSfM): Automated processing of historical aerial photographs for long-term topographic change analysis, Remote Sensing of Environment, 285, 113379, https://doi.org/10.1016/j.rse.2022.113379, 2023.
Larsen, C. F., Burgess, E., Arendt, A. A., O'Neel, S., Johnson, A. J., and Kienholz, C.: Surface melt dominates Alaska glacier mass balance, Geophysical Research Letters, 42, 5902–5908, https://doi.org/10.1002/2015GL064349, 2015.
Lüthi, M. P. and Bauder, A.: Analysis of Alpine glacier length change records with a macroscopic glacier model, Geogr. Helv., 65, 92–102, https://doi.org/10.5194/gh-65-92-2010, 2010.
Machguth, H., Eisen, O., Paul, F., and Hoelzle, M.: Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent Alpine glaciers, Geophysical Research Letters, 33, https://doi.org/10.1029/2006GL026576, 2006.
Marzeion, B., Kaser, G., Maussion, F., and Champollion, N.: Limited influence of climate change mitigation on short-term glacier mass loss, Nature Clim. Change, 8, 305–308, https://doi.org/10.1038/s41558-018-0093-1, 2018.
Maurer, J. M., Schaefer, J. M., Rupper, S., and Corley, A.: Acceleration of ice loss across the Himalayas over the past 40 years, Science Advances, 5, eaav7266, https://doi.org/10.1126/sciadv.aav7266, 2019.
Maussion, F., Butenko, A., Champollion, N., Dusch, M., Eis, J., Fourteau, K., Gregor, P., Jarosch, A. H., Landmann, J., Oesterle, F., Recinos, B., Rothenpieler, T., Vlug, A., Wild, C. T., and Marzeion, B.: The Open Global Glacier Model (OGGM) v1.1, Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-12-909-2019, 2019.
McAfee, S., Guentchev, G., and Eischeid, J.: Reconciling precipitation trends in Alaska: 2. Gridded data analyses, JGR Atmospheres, 119, https://doi.org/10.1002/2014JD022461, 2014.
McAfee, S. A., Guentchev, G., and Eischeid, J. K.: Reconciling precipitation trends in Alaska: 1. Station-based analyses, Journal of Geophysical Research: Atmospheres, 118, 7523–7541, https://doi.org/10.1002/jgrd.50572, 2013.
McGrath, D., Sass, L., O'Neel, S., Arendt, A., Wolken, G., Gusmeroli, A., Kienholz, C., and McNeil, C.: End-of-winter snow depth variability on glaciers in Alaska, Journal of Geophysical Research: Earth Surface, 120, 1530–1550, https://doi.org/10.1002/2015JF003539, 2015.
McGrath, D., Sass, L., O'Neel, S., Arendt, A., and Kienholz, C.: Hypsometric control on glacier mass balance sensitivity in Alaska and northwest Canada, Earth's Future, 5, 324–336, https://doi.org/10.1002/2016EF000479, 2017.
McNeil, C., O'Neel, S., Loso, M., Pelto, M., Sass, L., Baker, E. H., and Campbell, S.: Explaining mass balance and retreat dichotomies at Taku and Lemon Creek Glaciers, Alaska, J. Glaciol., 66, 530–542, https://doi.org/10.1017/jog.2020.22, 2020.
Mernild, S. H., Lipscomb, W. H., Bahr, D. B., Radić, V., and Zemp, M.: Global glacier changes: a revised assessment of committed mass losses and sampling uncertainties, The Cryosphere, 7, 1565–1577, https://doi.org/10.5194/tc-7-1565-2013, 2013.
Millan, R., Mouginot, J., Rabatel, A., and Morlighem, M.: Ice velocity and thickness of the world's glaciers, Nat. Geosci., 15, 124–129, https://doi.org/10.1038/s41561-021-00885-z, 2022.
Nye, J. F.: The response of glaciers and ice-sheets to seasonal and climatic changes, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 256, 559–584, https://doi.org/10.1098/rspa.1960.0127, 1960.
Nye, J. F.: The Frequency Response of Glaciers, J. Glaciol., 5, 567–587, https://doi.org/10.3189/S002214300001861X, 1965.
Oerlemans, J.: An attempt to simulate historic front variations of Nigardsbreen, Norway, Theor. Appl. Climatol., 37, 126–135, https://doi.org/10.1007/BF00867846, 1986.
Oerlemans, J.: Extracting a climate signal from 169 glacier records, Science, 308, 675–677, https://doi.org/10.1126/science.1107046, 2005.
Oerlemans, J. and Hoogendoorn, N. C.: Mass-Balance Gradients and Climatic Change, J. Glaciol., 35, 399–405, https://doi.org/10.3189/S0022143000009333, 1989.
Olson, M. and Rupper, S.: Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography, The Cryosphere, 13, 29–40, https://doi.org/10.5194/tc-13-29-2019, 2019.
Otto, D.: d-otto/ak_diseq: Codebase release (v0.0.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.13968461, 2024.
Rabus, B. T. and Echelmeyer, K. A.: The mass balance of McCall Glacier, Brooks Range, Alaska, U.S.A.; its regional relevance and implications for climate change in the Arctic, J. Glaciol., 44, 333–351, https://doi.org/10.3189/S0022143000002665, 1998.
Rasmussen, L. A. and Conway, H.: Estimating South Cascade Glacier (Washington, U.S.A.) mass balance from a distant radiosonde and comparison with Blue Glacier, J. Glaciol., 47, 579–588, https://doi.org/10.3189/172756501781831873, 2001.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier Outlines, Version 6, National Snow and Ice Data Center [data set], https://doi.org/10.7265/4M1F-GD79, 2017.
Roe, G. H. and Baker, M. B.: Glacier response to climate perturbations: An accurate linear geometric model, Journal of Glaciology, 60, 670–684, https://doi.org/10.3189/2014JoG14J016, 2014.
Roe, G. H. and O'Neal, M. A.: The response of glaciers to intrinsic climate variability: observations and models of late-Holocene variations in the Pacific Northwest, J. Glaciol., 55, 839–854, https://doi.org/10.3189/002214309790152438, 2009.
Roe, G. H., Baker, M. B., and Herla, F.: Centennial glacier retreat as categorical evidence of regional climate change, Nature Geosci., 10, 95–99, https://doi.org/10.1038/ngeo2863, 2017.
Roe, G. H., Christian, J. E., and Marzeion, B.: On the attribution of industrial-era glacier mass loss to anthropogenic climate change, The Cryosphere, 15, 1889–1905, https://doi.org/10.5194/tc-15-1889-2021, 2021.
Rohde, R. A. and Hausfather, Z.: The Berkeley Earth Land/Ocean Temperature Record, Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, 2020.
Rounce, D. R., Hock, R., Maussion, F., Hugonnet, R., Kochtitzky, W., Huss, M., Berthier, E., Brinkerhoff, D., Compagno, L., Copland, L., Farinotti, D., Menounos, B., and McNabb, R. W.: Global glacier change in the 21st century: Every increase in temperature matters, Science, 379, 78–83, https://doi.org/10.1126/science.abo1324, 2023.
Sanders, J. W., Cuffey, K. M., MacGregor, K. R., Kavanaugh, J. L., and Dow, C. F.: Dynamics of an alpine cirque glacier, American Journal of Science, 310, 753–773, https://doi.org/10.2475/08.2010.03, 2010.
Sass, L. C., Loso, M. G., Geck, J., Thoms, E. E., and Mcgrath, D.: Geometry, mass balance and thinning at Eklutna Glacier, Alaska: an altitude-mass-balance feedback with implications for water resources, J. Glaciol., 63, 343–354, https://doi.org/10.1017/jog.2016.146, 2017.
Shean, D. E., Bhushan, S., Montesano, P., Rounce, D. R., Arendt, A., and Osmanoglu, B.: A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance, Front. Earth Sci., 7, 363, https://doi.org/10.3389/feart.2019.00363, 2020.
U.S. Geological Survey (USGS) Glacier Project: Glacier-wide mass balance and compiled data inputs: USGS Benchmark Glaciers (ver 9.0, December 2024), U.S. Geological Survey data release, ScienceBase [data set], https://doi.org/10.5066/F7HD7SRF, 2016.
Wetherald, R. T., Stouffer, R. J., and Dixon, K. W.: Committed warming and its implications for climate change, Geophysical Research Letters, 28, 1535–1538, https://doi.org/10.1029/2000GL011786, 2001.
World Glacier Monitoring Service (WGMS): Fluctuations of Glaciers Database (wgms-fog-2022-09), WGMS [data set], https://doi.org/10.5904/WGMS-FOG-2022-09, 2022.
Young, J. C., Arendt, A., Hock, R., and Pettit, E.: The challenge of monitoring glaciers with extreme altitudinal range: mass-balance reconstruction for Kahiltna Glacier, Alaska, J. Glaciol., 64, 75–88, https://doi.org/10.1017/jog.2017.80, 2018.
Zekollari, H., Huss, M., and Farinotti, D.: On the imbalance and response time of glaciers in the European Alps, Geophysical Research Letters, 47, https://doi.org/10.1029/2019GL085578, 2020.
Zeller, L., McGrath, D., Sass, L., Florentine, C., and Downs, J.: Equilibrium line altitudes, accumulation areas and the vulnerability of glaciers in Alaska, Journal of Glaciology, 71, e28, https://doi.org/10.1017/jog.2024.65, 2025.
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016, Nature, 568, 382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019.
Short summary
Glaciers respond slowly to changes in climate, meaning that they are not yet adjusted to the present-day level of warming. Using a simple model, we find that the median Alaska glacier has undergone only 27 % of the retreat necessary to equilibrate to the current climate. Our findings hold even when accounting for large uncertainties, suggesting that substantial retreat is inevitable even if future warming slows or stabilizes.
Glaciers respond slowly to changes in climate, meaning that they are not yet adjusted to the...