Articles | Volume 19, issue 10
https://doi.org/10.5194/tc-19-4335-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-4335-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interannual variability in air temperature and snow drives differences in ice formation and growth
Arash Rafat
CORRESPONDING AUTHOR
Remote Sensing of Environmental Change (ReSEC) Research Group, Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, ON, Canada
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, ON, Canada
Homa Kheyrollah Pour
Remote Sensing of Environmental Change (ReSEC) Research Group, Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, ON, Canada
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, ON, Canada
Related authors
No articles found.
Alicia F. Pouw, Homa Kheyrollah Pour, and Alex MacLean
The Cryosphere, 17, 2367–2385, https://doi.org/10.5194/tc-17-2367-2023, https://doi.org/10.5194/tc-17-2367-2023, 2023
Short summary
Short summary
Collecting spatial lake snow depth data is essential for improving lake ice models. Lake ice growth is directly affected by snow on the lake. However, snow on lake ice is highly influenced by wind redistribution, making it important but challenging to measure accurately in a fast and efficient way. This study utilizes ground-penetrating radar on lakes in Canada's sub-arctic to capture spatial lake snow depth and shows success within 10 % error when compared to manual snow depth measurements.
Gifty Attiah, Homa Kheyrollah Pour, and K. Andrea Scott
Earth Syst. Sci. Data, 15, 1329–1355, https://doi.org/10.5194/essd-15-1329-2023, https://doi.org/10.5194/essd-15-1329-2023, 2023
Short summary
Short summary
Lake surface temperature (LST) is a significant indicator of climate change and influences local weather and climate. This study developed a LST dataset retrieved from Landsat archives for 535 lakes across the North Slave Region, NWT, Canada. The data consist of individual NetCDF files for all observed days for each lake. The North Slave LST dataset will provide communities, scientists, and stakeholders with the changing spatiotemporal trends of LST for the past 38 years (1984–2021).
Hannah Adams, Jane Ye, Bhaleka D. Persaud, Stephanie Slowinski, Homa Kheyrollah Pour, and Philippe Van Cappellen
Earth Syst. Sci. Data, 14, 5139–5156, https://doi.org/10.5194/essd-14-5139-2022, https://doi.org/10.5194/essd-14-5139-2022, 2022
Short summary
Short summary
Climate warming and land-use changes are altering the environmental factors that control the algal
productivityin lakes. To predict how environmental factors like nutrient concentrations, ice cover, and water temperature will continue to influence lake productivity in this changing climate, we created a dataset of chlorophyll-a concentrations (a compound found in algae), associated water quality parameters, and solar radiation that can be used to for a wide range of research questions.
Cited articles
Apsîte, E., Elferts, D., Andrejs, Z., and Latkovska, I.: Long-term changes in hydrological regime of the lakes in Latvia, Hydrol. Res., 45, 308–321, https://doi.org/10.2166/nh.2013.435, 2014.
ASTM International: Standard Test Method for Determination of Thermal Conductivity of Soil and Rock by Thermal Needle Probe Procedure D5334-22, https://doi.org/10.1520/D5334-22, 2022.
Attiah, G., Kheyrollah Pour, H., and Scott, K. A.: Four decades of lake surface temperature in the Northwest Territories, Canada, using a lake-specific satellite-derived dataset. J. Hydrol.: Reg. Stud., 50, 101571, https://doi.org/10.1016/J.EJRH.2023.101571, 2023.
Barrette, P. D., Hori, Y., and Kim, A. M.: The Canadian winter road infrastructure in a warming climate: Toward resiliency assessment and resource prioritization, Sustain. Resilient Infrastruct., 7, 842–860, https://doi.org/10.1080/23789689.2022.2094124, 2022.
Basu, A., Culpepper, J., Blagrave, K., and Sharma, S.: Phenological Shifts in Lake Ice Cover Across the Northern Hemisphere: A Glimpse Into the Past, Present, and the Future of Lake Ice Phenology, Water Resour. Res., 60, e2023WR036392, https://doi.org/10.1029/2023WR036392, 2024.
Benson, B., Magnuson, J., and Sharma, S.: Global Lake and River Ice Phenology Database, Version 1, Boulder, Colorado, USA, NSIDC: National Snow and Ice Data Center, https://doi.org/10.7265/N5W66HP8, 2000.
Benson, B. J., Magnuson, J. J., Jensen, O. P., Card, V. M., Hodgkins, G., Korhonen, J., Livingstone, D. M., Stewart, K. M., Weyhenmeyer, G. A., and Granin, N. G.: Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005), Climatic Change, 112, 299–323, https://doi.org/10.1007/s10584-011-0212-8, 2012.
Bilello, M. A.: Formation, Growth, and Decay of Sea-Ice in the Canadian Arctic Archipelago, Arctic, 14, 2–24, https://doi.org/10.14430/arctic3658, 1961.
Bilello, M. A.: Maximum thickness and subsequent decay of lake, river and fast sea ice in Canada and Alaska, Cold Reg. Res. Eng. Lab. (CRREL) Rep., 80-6, U. S. Army, Hanover, New Hampshire, 1980.
Bobée, B.: The Log Pearson type 3 distribution and its application in hydrology, Water Resour. Res., 11, 681–689, https://doi.org/10.1029/WR011i005p00681, 1975.
Cai, Y., Ke, C.-Q. Q., Yao, G., and Shen, X.: MODIS-observed variations of lake ice phenology in Xinjiang, China, Climatic Change, 158, 575–592, https://doi.org/10.1007/s10584-019-02623-2, 2020.
Catchpole, A. J. W. and Moodie, D. W.: Changes in the Canadian definitions of break-up and freeze-up, Atmosphere-Basel, 12, 133–138, https://doi.org/10.1080/00046973.1974.9648379, 1974.
Cheng, B., Cheng, Y., Vihma, T., Kontu, A., Zheng, F., Lemmetyinen, J., Qiu, Y., and Pulliainen, J.: Inter-annual variation in lake ice composition in the European Arctic: observations based on high-resolution thermistor strings, Earth Syst. Sci. Data, 13, 3967–3978, https://doi.org/10.5194/essd-13-3967-2021, 2021.
Choiński, A., Ptak, M., Skowron, R., and Strzelczak, A.: Changes in ice phenology on polish lakes from 1961 to 2010 related to location and morphometry, Limnologica, 53, 42–49, https://doi.org/10.1016/j.limno.2015.05.005, 2015.
Daly, S., Connor, B., Garron, J., Stuefer, S., Belz, N., and Bjella, K.: Design and operation of ice roads, Arctic Infrastructure Development Center, University of Alaska Fairbanks, 2023.
Duguay, C. R., Prowse, T. D., Bonsal, B. R., Brown, R. D., Lacroix, M. P., and Ménard, P.: Recent trends in Canadian lake ice cover, Hydrol. Process., 20, 781–801, https://doi.org/10.1002/hyp.6131, 2006.
Environment Canada: Climate Data Online, https://climate.weather.gc.ca/climate_normals/index_e.html (last access: 4 April 2025), 2025.
Fitzgerald, A. and van Rensburg, W. J.: Limitations of Gold's formula for predicting ice thickness requirements for heavy equipment, Can. Geotech. J., 61, 183–188, https://doi.org/10.1139/cgj-2022-0464, 2024.
Girjatowicz, J. P., Świątek, M., and Kowalewska-Kalkowska, H.: Relationships between air temperature and ice conditions on the southern Baltic coastal lakes in the context of climate change, J. Limnol., 81, https://doi.org/10.4081/jlimnol.2022.2060, 2022.
Gold, L. W.: Field Study on the Load Bearing Capacity of Ice Covers, Woodlands Rev. Pulp Pap. Mag. Canada, 61, 3–7, 1960.
Gow, A. J. and Govoni, J. W.: Ice growth on Post Pond, 1973–1982, Cold Reg. Res. Eng. Lab. (CRREL) Rep., 83-4, U. S. Army, Hanover, New Hampshire, 1983.
Hallerbäck, S., Huning, L. S., Love, C., Persson, M., Stensen, K., Gustafsson, D., and AghaKouchak, A.: Climate warming shortens ice durations and alters freeze and break-up patterns in Swedish water bodies, The Cryosphere, 16, 2493–2503, https://doi.org/10.5194/tc-16-2493-2022, 2022.
Hayley, D. W. and Proskin, S.: Managing the Safety of Ice Covers Used for Transportation in an Environment of Climate Warming, in: Proceedings of the 4th Canadian Conference on Geohazards: From Causes to Management, Quebec City, Canada, 20–24 May, 5–11, 2008.
Healy, J. J., de Groot, J. J., and Kestin, J.: The theory of the transient hot-wire method for measuring thermal conductivity, Physica B + C, 82, 392–408, https://doi.org/10.1016/0378-4363(76)90203-5, 1976.
Hou, G., Yuan, X., Wu, S., Ma, X., Zhang, Z., Cao, X., Xie, C., Ling, Q., Long, W., and Luo, G.: Phenological Changes and Driving Forces of Lake Ice in Central Asia from 2002 to 2020, Remote Sens.-Basel, 14, 1–15, https://doi.org/10.3390/rs14194992, 2022.
Huang, W., Cheng, B., Zhang, J., Zhang, Z., Vihma, T., Li, Z., and Niu, F.: Modeling experiments on seasonal lake ice mass and energy balance in the Qinghai–Tibet Plateau: a case study, Hydrol. Earth Syst. Sci., 23, 2173–2186, https://doi.org/10.5194/hess-23-2173-2019, 2019.
Huang, W., Zhang, Z., Li, Z., Leppäranta, M., Arvola, L., Song, S., Huotari, J., and Lin, Z.: Under-Ice Dissolved Oxygen and Metabolism Dynamics in a Shallow Lake: The Critical Role of Ice and Snow, Water Resour. Res., 57, https://doi.org/10.1029/2020WR027990, 2021.
International Organization for Standardization (ISO): Petroleum and natural gas industries – Arctic offshore structures, Standard 19906:2019, 2019.
Jackson, K., Wilkinson, J., Maksym, T., Meldrum, D., Beckers, J., Haas, C., and Mackenzie, D.: A novel and low-cost sea ice mass balance buoy, J. Atmos. Ocean. Tech., 30, 2676–2688, https://doi.org/10.1175/JTECH-D-13-00058.1, 2013.
Jensen, O. P., Benson, B. J., Magnuson, J. J., Card, V. M., Futter, M. N., Soranno, P. A., and Stewart, K. M.: Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period, Limnol. and Oceanogr., 52, 2013–2026, https://doi.org/10.4319/lo.2007.52.5.2013, 2007.
Kheyrollah Pour, H., Duguay, C. R., Solberg, R., and Rudjord, Ø.: Impact of satellite-based lake surface observations on the initial state of HIRLAM. Part I: evaluation of remotely-sensed lake surface water temperature observations, Tellus A, 66, https://doi.org/10.3402/TELLUSA.V66.21534, 2014a.
Kheyrollah Pour, H., Rontu, L., Duguay, C., Eerola, K., and Kourzeneva, E.: Impact of satellite-based lake surface observations on the initial state of HIRLAM. Part II: Analysis of lake surface temperature and ice cover, Tellus A, 66, 21395, https://doi.org/10.3402/TELLUSA.V66.21395, 2014b.
Kirillin, G., Leppäranta, M., Terzhevik, A., Granin, N., Bernhardt, J., Engelhardt, C., Efremova, T., Golosov, S., Palshin, N., Sherstyankin, P., Zdorovennova, G., and Zdorovennov, R.: Physics of seasonally ice-covered lakes: a review, Aquat. Sci., 74, 659–682, https://doi.org/10.1007/s00027-012-0279-y, 2012.
Koo, Y., Lei, R., Cheng, Y., Cheng, B., Xie, H., Hoppmann, M., Kurtz, N. T., Ackley, S. F., and Mestas-Nuñez, A. M.: Estimation of thermodynamic and dynamic contributions to sea ice growth in the Central Arctic using ICESat-2 and MOSAiC SIMBA buoy data, Remote Sens. Environ., 267, 112730, https://doi.org/10.1016/j.rse.2021.112730, 2021.
Korhonen, J.: Long-term changes in like ice cover in Finland, Nord. Hydrol., 37, 347–363, https://doi.org/10.2166/nh.2006.019, 2006.
L'Abée-Lund, J. H., Vøllestad, L. A., Brittain, J. E., Kvambekk, Å. S., and Solvang, T.: Geographic variation and temporal trends in ice phenology in Norwegian lakes during the period 1890–2020, The Cryosphere, 15, 2333–2356, https://doi.org/10.5194/tc-15-2333-2021, 2021.
Latifovic, R. and Pouliot, D.: Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record, Remote Sens. Environ., 106, 492–507, https://doi.org/10.1016/J.RSE.2006.09.015, 2007.
Lei, R., Cheng, B., Heil, P., Vihma, T., Wang, J., Ji, Q., and Zhang, Z.: Seasonal and Interannual Variations of Sea Ice Mass Balance From the Central Arctic to the Greenland Sea, J. Geophys. Res.-Oceans, 123, 2422–2439, https://doi.org/10.1002/2017JC013548, 2018.
Leppäranta, M.: Freezing of Lakes and the Evolution of their Ice Cover, Springer Berlin Heidelberg, Berlin, Heidelberg, 301 pp., https://doi.org/10.1007/978-3-642-29081-7, 2015.
Leppäranta, M., Lindgren, E., and Shirasawa, K.: The heat budget of Lake Kilpisjärvi in the Arctic tundra, Hydrol. Res., 48, 969–980, https://doi.org/10.2166/nh.2016.171, 2017.
Lynch, M., Briggs, R., English, J., Khan, A. A., Khan, H., and Puestow, T.: Operational Monitoring of River Ice on the Churchill River, Labrador, in: Proceedings of the 21st CRIPE Workshop on the Hydraulics of Ice-covered Rivers, Saskatoon, Saskatchewan, Committee on River Ice Processes and the Environment (CRIPE), 29 August–1 September 2021.
Masterson, D. M.: State of the art of ice bearing capacity and ice construction, Cold Reg. Sci. Technol., 58, 99–112, https://doi.org/10.1016/J.COLDREGIONS.2009.04.002, 2009.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.: Estimating the volume and age of water stored in global lakes using a geo-statistical approach, Nat. Commun., 7, 1–11, https://doi.org/10.1038/ncomms13603, 2016.
Michel, B.: Winter regime of rivers and lakes, Cold Reg Res Eng Lab (CRREL), Monogr., III-B1a, U. S. Army, Hanover, New Hampshire, 1971.
Morse, P. D. and Wolfe, S. A.: Long-Term River Icing Dynamics in Discontinuous Permafrost, Subarctic Canadian Shield, Permafrost Periglac., 28, 580–586, https://doi.org/10.1002/ppp.1907, 2017.
Newton, A. M. W. and Mullan, D. J.: Climate change and Northern Hemisphere lake and river ice phenology from 1931–2005, The Cryosphere, 15, 2211–2234, https://doi.org/10.5194/tc-15-2211-2021, 2021.
Palecki, M. A. and Barry, R. G.: Freeze-up and break-up of lakes as an index of temperature changes during the transition seasons: a case study for Finland, J. Clim. Appl. Meteorol., 25, 893–902, https://doi.org/10.1175/1520-0450(1986)025<0893:FUABUO>2.0.CO;2, 1986.
Phillips, R. W., Spence, C., and Pomeroy, J. W.: Connectivity and runoff dynamics in heterogeneous basins, Hydrol. Process., 25, 3061–3075, https://doi.org/10.1002/hyp.8123, 2011.
Pouw, A. F., Kheyrollah Pour, H., and MacLean, A.: Mapping snow depth on Canadian sub-arctic lakes using ground-penetrating radar, The Cryosphere, 17, 2367–2385, https://doi.org/10.5194/tc-17-2367-2023, 2023.
Prowse, T. D., Furgal, C., Chouinard, R., Melling, H., Milburn, D., and Smith, S. L.: Implications of Climate Change for Economic Development in Northern Canada: Energy, Resource, and Transportation Sectors, AMBIO: A J. of the Human Environment, 38, 272–281, https://doi.org/10.1579/0044-7447-38.5.272, 2009.
Rafat, A. and Kheyrollah Pour, H.: Data for: Thermistor-derived measurements of snow depths, ice thicknesses, and surface temperatures in Landing Lake, Northwest Territories, Canada: 2021–2023 (October–December), Borealis, https://doi.org/10.5683/SP3/QZJVYD, 2025.
Rafat, A., Kheyrollah Pour, H., Spence, C., Palmer, M. J., and MacLean, A.: An analysis of ice growth and temperature dynamics in two Canadian subarctic lakes, Cold Reg. Sci. Technol., 210, 103808, https://doi.org/10.1016/j.coldregions.2023.103808, 2023.
Rafat, A., Kheyrollah Pour, H., Spence, C., and Palmer, M. J.: A field study of lake ice decay, in: Proceedings of the 27th IAHR Symposium on Ice, Gdańsk, Poland, 251–263, https://doi.org/10.5281/zenodo.14541556, 9–13 June 2024.
Sharma, S., Richardson, D. C., Woolway, R. I., Imrit, M. A., Bouffard, D., Blagrave, K., Daly, J., Filazzola, A., Granin, N., Korhonen, J., Magnuson, J., Marszelewski, W., Matsuzaki, S. I. S., Perry, W., Robertson, D. M., Rudstam, L. G., Weyhenmeyer, G. A., and Yao, H.: Loss of Ice Cover, Shifting Phenology, and More Extreme Events in Northern Hemisphere Lakes, J. Geophys. Res.-Biogeo., 126, 1–12, https://doi.org/10.1029/2021JG006348, 2021.
Shen, H. T.: Mathematical modeling of river ice processes, Cold Reg. Sci. Technol., 62, 3–13, https://doi.org/10.1016/j.coldregions.2010.02.007, 2010.
Skinner, W. R.: Lake ice conditions as a cryospheric indicator for detecting climate variability in Canada: in: Proceedings of Snow Watch, WDC-A Glaciological Data Report 25, 204–240, 1993.
Song, S., Li, C., Shi, X., Zhao, S., Tian, W., Li, Z., Bai, Y., Cao, X., Wang, Q., Huotari, J., Tulonen, T., Uusheimo, S., Leppäranta, M., Loehr, J., and Arvola, L.: Under-ice metabolism in a shallow lake in a cold and arid climate, Freshwater Biol., 64, 1710–1720, https://doi.org/10.1111/fwb.13363, 2019.
Spence, C. and Hedstrom, N.: Hydrometeorological data from Baker Creek Research Watershed, Northwest Territories, Canada, Earth Syst. Sci. Data, 10, 1753–1767, https://doi.org/10.5194/essd-10-1753-2018, 2018.
Strandberg, A. G., Spencer, P. A., Strandberg, G. M., and Embacher, U.: Extended season ice road operation, in: Proceedings of the International Conference and Exhibition on Performance of Ships and Structures in Ice, ICETECH 2012, 378–383, https://doi.org/10.5957/icetech-2012-147, 2012.
Sun, L., Wang, B., Ma, Y., Shi, X., and Wang, Y.: Analysis of Ice Phenology of Middle and Large Lakes on the Tibetan Plateau, Sensors-Basel, 23 https://doi.org/10.3390/s23031661, 2023.
Todd, M. C., and Mackay, A. W.: Large-scale climatic controls on Lake Baikal Ice Cover, J. of Clim., 16, 3186–3199, https://doi.org/10.1175/1520-0442(2003)016<3186:LCCOLB>2.0.CO;2, 2003.
Wynne, R. H.: Statistical modeling of lake ice phenology: issues and implications, SIL Proceedings, 1922–2010, 27, 2820–2825, https://doi.org/10.1080/03680770.1998.11898182, 2000.
Yao, X., Li, L., Zhao, J., Sun, M., Li, J., Gong, P., and An, L.: Spatial-temporal variations of lake ice phenology in the Hoh Xil region from 2000 to 2011, J. Geogr. Sci., 26, 70–82, https://doi.org/10.1007/s11442-016-1255-6, 2016.
Zhang, X., Flato, G., Kirchmeier-Young, M., Vincent, L., Wan, H., Wang, X., Rong, R., Fyfe, J., Li, G., and Kharin, V. V.: Changes in Temperature and Precipitation Across Canada, in: Canada's Changing Climate Report, Chap. 4, edited by: Bush, E. and Lemmen, D. S., Government of Canada, Ottawa, Ontario, 112–193, ISBN 978-0-660-30222-5, 2019.
Short summary
Climate change in Canada’s Northwest Territories (NWT) is making lake ice less predictable, thereby affecting ice road safety for northern communities. In this study, observations of significant changes in ice formation and growth between October and December of 2021–2023 in a small NWT lake are related to changes in local snowfall and air temperatures. Collected data were used to develop simple models that can be applied to ice road planning, construction, and design under future and current climate change.
Climate change in Canada’s Northwest Territories (NWT) is making lake ice less predictable,...