Articles | Volume 19, issue 8
https://doi.org/10.5194/tc-19-3139-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-3139-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Factors influencing lake surface water temperature variability in West Greenland and the role of the ice sheet
Meteorology Department, University of Reading, Reading, UK
Christopher J. Merchant
Meteorology Department, University of Reading, Reading, UK
National Centre for Earth Observations, University of Reading, Reading, UK
Richard I. Woolway
School of Ocean Sciences, Bangor University, Bangor, UK
Niall McCarroll
Meteorology Department, University of Reading, Reading, UK
National Centre for Earth Observations, University of Reading, Reading, UK
Related authors
No articles found.
Mohammad Arshad Imrit, Alessandro Filazzola, R. Iestyn Woolway, and Sapna Sharma
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-31, https://doi.org/10.5194/tc-2022-31, 2022
Manuscript not accepted for further review
Short summary
Short summary
Process-based models are frequently used to investigate the influence of climate change on lake ice cover, but an assessment of their validity at large spatial scales is currently lacking. Here, we provide a global assessment of lake ice models, comparing the models can accurately simulate the long-term change in lake ice but fail to capture the occurrence of extreme ice years. Model performance also differs across location and morphometric gradients.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Cited articles
Abrams, M., Crippen, R., and Fujisada, H.: ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD), Remote Sens.-Basel, 12, 1156, https://doi.org/10.3390/rs12071156, 2020. a, b
Anderson, N., Bennike, O., Christoffersen, K., Jeppesen, E., Markager, S., Miller, G., and Renberg, I.: Limnological and palaeolimnological studies of lakes in south-western Greenland, Geology of Greenland Survey Bulletin, 183, 68–74, https://doi.org/10.34194/ggub.v183.5207, 1999. a
Anderson, N., Harriman, R., Ryves, D., and Patrick, S.: Dominant factors controlling variability in the ionic composition of West Greenland lakes, Arct. Antarct. Alp. Res., 33, 418–425, https://doi.org/10.1080/15230430.2001.12003450, 2001. a, b
Anderson, N., Saros, J., Bullard, J., Cahoon, S., McGowan, S., Bagshaw, E., Barry, C., Bindler, R., Burpee, B., Carrivick, J., Fowler, R., Fox, A., Fritz, S., Giles, M., Hamerlick, L., Ingeman-Nielsen, T., Law, A., Mernild, S., Northington, R., Osburn, C., Pla-Rabès, S., Post, E., Telling, J., Stroud, D., Whiteford, E., Yallop, M., and Yde, J.: The Arctic in the twenty-first century: changing biogeochemical linkages across a paraglacial landscape of Greenland, Bioscience, 67, 118–133, https://doi.org/10.1093/biosci/biw158, 2017. a
Benn, D., Warren, C., and Mottram, R.: Calving processes and the dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, https://doi.org/10.1016/j.earscirev.2007.02.002, 2007. a
Boehrer, B. and Schultze, M.: Stratification of lakes, Rev. Geophys., 46, RG2005, https://doi.org/10.1029/2006RG000210, 2008. a
Brodersen, K. and Anderson, N.: Subfossil insect remains (Chironomidae) and lake-water temperature inference in the Sisimiut–Kangerlussuaq region, southern West Greenland, Geology of Greenland Survey Bulletin, 186, 78–82, https://doi.org/10.34194/ggub.v186.5219, 2000. a
Brodersen, K. and Anderson, N.: Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction, Freshwater Biol., 47, 1137–1157, https://doi.org/10.1046/j.1365-2427.2002.00831.x, 2002. a
Burpee, B., Anderson, D., and Saros, J.: Assessing ecological effects of glacial meltwater on lakes fed by the Greenland Ice Sheet: the role of nutrient subsidies and turbidity, Arct. Antarct. Alp. Res., 50, 995–1014, https://doi.org/10.1080/15230430.2017.1420953, 2018. a
Carrea, L., Embury, O., and Merchant, C.: Datasets related to in-land water for limnology and remote sensing applications: distance-to-land, distance-to-water, water-body identifier and lake-centre co-ordinates., Geosci. Data J., 2, 83–97, https://doi.org/10.1002/gdj3.32, 2015. a, b
Carrea, L., Crétaux, J.-F., Liu, X., Wu, Y., Bergé-Nguyen, M., Calmettes, B., Duguay, C., Jiang, D., Merchant, C., Mueller, D., Selmes, N., Spyrakos, E., Simis, S., Stelzer, K., Warren, M., Yésou, H., and Zhang, D.: ESA Lakes Climate Change Initiative (Lakes_cci): Lake products, Version 2.0.2, Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/a07deacaffb8453e93d57ee214676304, 2022a. a, b
Carrea, L., Merchant, C., and Simis, S.: Lake mask and distance to land dataset of 2024 lakes for the European Space Agency Climate Change Initiative Lakes v2 (Version 2.0.1), Zenodo [data set], https://doi.org/10.5281/zenodo.6699376, 2022b. a, b, c
Carrea, L., Crétaux, J., Liu, X., Wu, Y., Berge-Nguyen, M., Calmettes, B., Duguay, C., Merchant, C., Selmes, N., Simis, S., Warren, M., Yésou, H., Müller, D., Jiang, D., and Albergel, C.: Satellite-derived multivariate world-wide lake physical variable timeseries for climate studies, Scientific Data, 10, 30, https://doi.org/10.1038/s41597-022-01889-z, 2023. a, b, c, d, e
Carrea, L., Crétaux, J.-F., Liu, X., Wu, Y., Bergé-Nguyen, M., Calmettes, B., Duguay, C., Jiang, D., Merchant, C., Mueller, D., Selmes, N., Spyrakos, E., Simis, S., Stelzer, K., Warren, M., Yésou, H., and Zhang, D.: ESA Lakes Climate Change Initiative (Lakes_cci): Lake products, Version 2.1.0, Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/7fc9df8070d34cacab8092e45ef276f1, 2024. a, b
Carrivick, J., Tweed, F., Sutherland, J., and Mallalieu, J.: Toward numerical modeling of interactions between ice-marginal proglacial lakes and glaciers, Front. Earth Sci., 8, 577068, https://doi.org/10.3389/feart.2020.577068, 2022. a
Chernos, M., Koppes, M., and Moore, R. D.: Ablation from calving and surface melt at lake-terminating Bridge Glacier, British Columbia, 1984–2013, The Cryosphere, 10, 87–102, https://doi.org/10.5194/tc-10-87-2016, 2016. a
Dye, A., Bryant, R., Dodd, E., Falcini, F., and Rippin, D.: Warm Arctic proglacial lakes in the ASTER surface temperature product, Remote Sens.-Basel, 13, 2987, https://doi.org/10.3390/rs13152987, 2021. a, b
Earth Resources Observation and Science (EROS) Center: Landsat 8-9 Operational Land Imager/Thermal Infrared Sensor Level-1, Collection 2, U.S. Geological Survey [data set], https://doi.org/10.5066/P975CC9B, 2020. a
Edinger, J., Duttweiler, D., and Geyer, J.: The response of water temperature to meteorological conditions, Water Resour. Res., 4, 1137–1143, 1968. a
Embury, O., Merchant, C., Good, S., Rayner, N., J. L. Høyer, C. A., Block, T., Alerskans, E., Pearson, K., Worsfold, M., McCarroll, N., and Donlon, C.: Satellite-based time-series of sea-surface temperature since 1980 for climate applications, Scientific Data, 11, 326, https://doi.org/10.1038/s41597-024-03147-w, 2024. a
Fichot, C., Matsumoto, K., Holt, B., Gierach, M., and Tokos, K.: Assessing change in the overturning behavior of the Laurentian Great Lakes using remotely sensed lake surface water temperatures, Remote Sens. Environ., 235, 111427, https://doi.org/10.1016/j.rse.2019.111427, 2019. a
Fowler, R., Osburn, C., and Saros, J.: Climate-driven changes in dissolved organic carbon and water clarity in Arctic lakes of West Greenland, J. Geophys. Res.-Biogeo., 125, e2019JG005170, https://doi.org/10.1029/2019JG005170, 2020. a
GEM: Greenland Ecosystem Monitoring – BioBasis Nuuk – Lakes – Temperature in lakes (Version 1.0), Greenland Ecosystem Monitoring [data set], https://doi.org/10.17897/BKTY-J070, 2025. a
Good, S. A., Embury, O., Bulgin, C. E., and Mittaz, J.: ESA Sea Surface Temperature Climate Change Initiative (SST_cci): Level 4 Analysis Climate Data Record, version 2.1, Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/62c0f97b1eac4e0197a674870afe1ee6, 2019. a, b
Grinsted, A., Hvidberg, C., Campos, N., and Dahl-Jensen, D.: Periodic outburst floods from an ice-dammed lake in East Greenland, Sci. Rep.-UK, 7, 9966, https://doi.org/10.1038/s41598-017-07960-9, 2017. a
Hazuková, V., Burpee, B., McFarlane-Wilson, I., and Saros, J.: Under ice and early summer phytoplankton dynamics in two Arctic lakes with differing DOC, J. Geophys. Res.-Biogeo., 126, e2020JG005972, https://doi.org/10.1029/2020JG005972, 2021. a
Hazuková, V., Burpee, B., Northington, R., Anderson, N., and Saros, J.: Earlier ice melt increases hypolimnetic oxygen despite regional warming in small Arctic lakes, Limnology and Oceanograhy Letters, 9, 258–267, https://doi.org/10.1002/lol2.10386, 2024. a
Heiskanen, J., Mammarella, I., Ojala, A., Stepanenko, V., Erkkilä, K.-M., Miettinen, H., Sandström, H., Eugster, W., Leppäranta, M., Järvinen, H., Vesala, T., and Nordbo, A.: Effects of water clarity on lake stratification and lake-atmosphere heat exchange, J. Geophys. Res.-Atmos., 120, 7412–7428, https://doi.org/10.1002/2014JD022938, 2015. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., noz Sabater, J. M., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b, c
Hollman, R., Merchant, C., Saunders, R., Downy, C., Buchwitz, M., Cazenave, A., Chuvieco, E., Defourny, P., de Leeuw, G., Forsberg, R., Holzer-Popp, T., Paul, F., Sandven, S., Sathyendranath, S., van Roozendael, M., and Wagner, W.: The ESA climate change initiative: satellite data records for essential climate variables, B. Am. Meteorol. Soc., 94, 1541–1552, https://doi.org/10.1175/BAMS-D-11-00254.1, 2013. a
How, P., Messerli, A., Mätzler, E., Santoro, M., Wiesmann, A., Caduff, R., Langley, K., Bojesen, M., Paul, F., Kääb, A., and Carrivick, L.: Greenland-wide inventory of ice marginal lakes using a multi-method approach, Sci. Rep., 11, 4481, https://doi.org/10.1038/s41598-021-83509-1, 2021. a
Kettle, H., Thompson, R., Anderson, N., and Livingstone, D.: Empirical modeling of summer lake surface temperatures in southwest Greenland, Limnol. Oceanogr., 49, 271–282, https://doi.org/10.4319/lo.2004.49.1.0271, 2004. a, b
Khazaei, B., Read, L. K., Casali, M., Sampson, K. M., and Yates, D. N.: GLOBathy, the Global Lakes Bathymetry Dataset, figshare [data set], https://doi.org/10.6084/m9.figshare.c.5243309.v1, 2022a. a, b
Khazaei, B., Read, L., Casali, M., Sampson, K., and Yates, D.: GLOBathy, the global lakes bathymetry dataset, Scientific Data, 9, 36, https://doi.org/10.1038/s41597-022-01132-9, 2022b. a, b
King, O., Bhattacharya, A., Bhambri, R., and Bolch, T.: Glacial lakes exacerbate Himalayan glacier mass loss, Sci. Rep., 9, 18145, https://doi.org/10.1038/s41598-019-53733-x, 2019. a
King, O., Bhattacharya, A., Ghuffar, S., Tait, A., Guilford, S., Elmore, A., and Bolch, T.: Six decades of glacier mass changes around Mt. Everest are revealed by historical and contemporary images, One Earth, 3, 608–620, https://doi.org/10.1016/j.oneear.2020.10.019, 2020. a
Kirillin, G., Shatwell, T., and Wen, L.: Ice-covered lakes of Tibetan Plateau as solar heat collectors, Geophys. Res. Lett., 48, e2021GL093429, https://doi.org/10.1029/2021GL093429, 2021. a
Kjeldsen, K., Khan, S., Bjørk, A., Nielsen, K., and Mouginot, J.: Ice-dammed lake drainage in west Greenland: drainage pattern and implications on ice flow and bedrock motion, Geophys. Res. Lett., 44, 7320–7327, https://doi.org/10.1002/2017GL074081, 2017. a
Lagouarde, J.-P., Bhattacharya, B., Crébassol, P., Gamet, P., Babu, S., Boulet, G., Briottet, X., Buddhiraju, K., Cherchali, S., Dadou, I., Dedieu, G., Gouhier, M., Hagolle, O., Irvine, M., Jacob, F., Kumar, A., Kumar, K., Laignel, B., Mallick, K., Murthy, C., Olioso, A., Ottlé, C., Pandya, M., Raju, P., Roujean, J.-L., Sekhar, M., Shukla, M., Singh, S., Sobrino, J., and Ramakrishnan, R.: The Indian-French Trishna Mission: Earth observation in the thermal infrared with high spatio-temporal tesolution, IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018, https://doi.org/10.1109/IGARSS.2018.8518720, 4078–4081, 2018. a
Liang, S.: Narrowband to broadband conversions of land surface albedo I: Algorithms, Remote Sens. Environ., 76, 213–238, https://doi.org/10.1016/S0034-4257(00)00205-4, 2001. a
MacCallum, S. and Merchant, C.: Surface water temperature observations of large lakes by optimal estimation, Can. J. Remote Sens., 38, 25–45, https://doi.org/10.5589/m12-010, 2012. a
Mallalieu, J., Carrivick, J., Quincey, D., and Smith, M.: Calving seasonality associated with melt-undercutting and lake ice cover, Geophys. Res. Lett., 47, e2019GL086561, https://doi.org/10.1029/2019GL086561, 2020. a
Mallalieu, J., Carrivick, J., Quincey, D., and Raby, C.: Ice-marginal lakes associated with enhanced recession of the Greenland Ice Sheet, Global Planet. Change, 202, 103503, https://doi.org/10.1016/j.gloplacha.2021.103503, 2021. a, b
Maurer, M., Schaefer, J. M., Rupper, S., and Corley, A.: Acceleration of ice loss across the Himalayas over the past 40 years, Science Advances, 5, eaav7266, https://doi.org/10.1126/sciadv.aav7266, 2019. a
McFeeters, S.: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, Int. J. Remote Sens., 17, 1425–1432, https://doi.org/10.1080/01431169608948714, 2021. a
Merchant, C., Embury, O., Bulgin, C., Block, T., Corlett, G., Fiedler, E., Good, S., Mittaz, J., Rayner, N., Berry, D., Eastwood, S., Taylor, M., Tsushima, Y., Waterfall, A., Wilson, R., and Donlon, C.: Satellite-based time-series of sea-surface temperature since 1981 for climate applications, Scientific Data, 6, 223, https://doi.org/10.1038/s41597-019-0236-x, 2019. a
Minowa, M., Schaefer, M., and Skvarca, P.: Effects of topography on dynamics and mass loss of lake-terminating glaciers in southern Patagonia, J. Glaciol., 69, 1580–1597, https://doi.org/10.1017/jog.2023.42, 2023. a
Moon, T., Fisher, M., Stafford, T., and Thurber, A.: QGreenland (v3.0.0), National Snow and Ice Data Center, Zenodo [data set], https://doi.org/10.5281/zenodo.12823307, 2023. a
Muñoz-Sabater, J.: ERA5-Land hourly data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019. a, b, c, d
NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team: ASTER Global Digital Elevation Model V003, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/ASTER/ASTGTM.003, 2019. a, b, c, d
Prater, C., Bullard, J., Osburn, C., Martin, S., Watts, M., and Anderson, N.: Landscape controls on nutrient stoichiometry regulate lake primary production at the margin of the Greenland Ice Sheet, Ecosystems, 25, 931–947, https://doi.org/10.1007/s10021-021-00693-x, 2022. a
Pronk, J. B., Bolch, T., King, O., Wouters, B., and Benn, D. I.: Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region, The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021, 2021. a
Read, J. and Rose, K.: Physical responses of small temperate lakes to variation in dissolved organic carbon concentrations, Limnol. Oceanogr., 58, 921–931, https://doi.org/10.4319/lo.2013.58.3.0921, 2013. a
Ryves, D., McGowan, S., and Anderson, N.: Development and evaluation of a diatom-conductivity model from lakes in West Greenland, Freshwater Biol., 47, 995–1014, https://doi.org/10.1046/j.1365-2427.2002.00832.x, 2002. a
Saros, J., Northington, R., Osburn, C., Burpee, B., and Anderson, N.: Thermal stratification in small arctic lakes of southwest Greenland affected by water transparency and epilimnetic temperatures, Limnol. Oceanogr., 61, 1530–1542, https://doi.org/10.1002/lno.10314, 2016. a, b, c
Saros, J., Anderson, N., Juggins, S., McGowan, S., Yde, J., Telling, J., Bullard, J., Yallop, M., Heathcote, A., Burpee, B., Fowler, R., Barry, C., Northington, R., Osburn, C., Pla-Rabès, S., Mernild, S., Whiteford, E., Andrews, M. G., Kerby, J., and Post, E.: Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape, Environ. Res. Lett., 14, 074027, https://doi.org/10.1088/1748-9326/ab2928, 2019. a, b
Saros, J., Arp, C., Bouchard, F., Comte, J., Couture, R.-M., Dean, J., Lafrenière, M., MacIntyre, S., McGowan, S., Rautio, M., Prater, C., Tank, S., Walvoord, M., Wickland, K., Antoniades, D., Ayala-Borda, P., Canario, J., Drake, T., Folhas, D., Hazuková, V., Kivilä, H., Klanten, Y., Lamoureux, S., Laurion, I., Pilla, R., Vonk, J., Zolkos, S., and Vincent, W.: Sentinel responses of Arctic freshwater systems to climate: linkages, evidence, and a roadmap for future research, Arctic Science, 9, 356–392, https://doi.org/10.1139/as-2022-0021, 2023. a
Schneider, P. and Hook, S.: Space observations of inland water bodies show rapid surface warming since 1985, Geophys. Res. Lett., 37, L22405, https://doi.org/10.1029/2010GL045059, 2010. a
Sommaruga, R.: When glaciers and ice sheets melt: consequences for planktonic organisms, J. Plankton Res., 37, 509–518, https://doi.org/10.1093/plankt/fbv027, 2015. a
Stengel, M., Sus, O., Stapelberg, S., Finkensieper, S., Würzler, B., Philipp, D., Hollmann, R., and Poulsen, C.: ESA Cloud Climate Change Initiative (Cloud_cci), Version 3.0, Centre for Environmental Data Analysis [data set], https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V003, 2020. a, b, c, d
Sugiyama, S., Minowa, M., Fukamachi, Y., Hata, S., Yamamoto, Y., Sauter, T., Schneider, C., and Schaefer, M.: Subglacial discharge controls seasonal variations in the thermal structure of a glacial lake in Patagonia, Nat. Commun., 12, 6301, https://doi.org/10.1038/s41467-021-26578-0, 2021. a
Truffer, M. and Motyka, R.: Where glaciers meet water: subaqueous melt and its relevance to glaciers in various settings, Rev. Geophys., 54, 220–239, https://doi.org/10.1002/2015RG000494, 2016. a
Tsutaki, S., Nishimura, D., Yoshizawa, T., and Sugiyama, S.: Changes in glacier dynamics under the influence of proglacial lake formation in Rhonegletscher, Switzerland, Ann. Glaciol., 52, 31–36, https://doi.org/10.3189/172756411797252194, 2011. a
Vanhellemont, Q. and Ruddick, K.: Advantages of high quality SWIR bands for ocean colour processing: examples from Landsat-8, Remote Sens. Environ., 161, 89–106, https://doi.org/10.1016/j.rse.2015.02.007, 2015. a
Williams, G.: Water temperature during the melting of lake ice, Water Resour. Res., 5, 1134–1138, https://doi.org/10.1029/WR005i005p01134, 1969. a
Williamson, C., Saros, J., and Schindler, D.: Sentinels of change, Science, 323, 887–888, https://doi.org/10.1126/science.1169443, 2009. a
Woolway, R. and Merchant, C.: Intralake heterogeneity of thermal responses to climate change: a study of large Northern Hemisphere lakes, J. Geophys. Res.-Atmos., 123, 3087–3098, https://doi.org/10.1002/2017JD027661, 2018. a
Woolway, R., Verburg, P., Merchant, C., Lenters, J., Hamilton, D., Brookes, J., Kelly, S., Hook, S., Laas, A., Pierson, D., Rimmer, A., Rusak, J., and Jones, I.: Latitude and lake size are important predictors of over-lake atmospheric stability, Geophys. Res. Lett., 44, 8875–8883, https://doi.org/10.1002/2017GL073941, 2017. a
Woolway, R., Sharma, S., Weyhenmeyer, G., Debolskiy, A., Golub, M., Mercado-Bettín, D., Perroud, M., Stepanenko, V., Tan, Z., Grant, L., Ladwig, R., Mesman, J., Moore, T., Shatwell, T., Vanderkelen, I., Austin, J., DeGasperi, C., Dokulil, M., Fuente, S. L., Mackay, E., Schladow, S., Watanabe, S., Marcé, R., Pierson, D., Thiery, W., and Jennings, E.: Phenological shifts in lake stratification under climate change, Nat. Commun., 12, 2318, https://doi.org/10.1038/s41467-021-22657-4, 2021. a, b, c, d, e, f
Woolway, R., Sharma, S., and Smol, J.: Lakes in hot water: the impacts of a changing climate on aquatic ecosystems, Bioscience, 72, 1050–1061, https://doi.org/10.1093/biosci/biac052, 2022. a
Xu, H.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, Int. J. Remote Sens., 27, 3025–3033, https://doi.org/10.1080/01431160600589179, 2006. a
Yang, J. and Du, X.: An enhanced water index in extracting water bodies from Landsat TM imagery, Annals of GIS, 23, 141–148, https://doi.org/10.1080/19475683.2017.1340339, 2017. a
Zhang, G. and Bolch, T.: Quantifying ice mass loss caused by the replacement of glacial ice with lake water, Nat. Geosci., 16, 290–291, https://doi.org/10.1038/s41561-023-01151-0, 2023. a
Short summary
Lakes in Greenland serve as a crucial sentinel of climate change. Satellites can be used to monitor water temperature and ice. Using 28 years of measurements from satellites, we conclude that lakes are overall warmer than previously thought. The lakes connected to the ice sheet are cooler than the rest because of cold glacial meltwater inflow. Changes in water temperature can impact light availability, nutrient cycling, and oxygen levels that are crucial for the lake ecosystem and have an influence on the ice sheet.
Lakes in Greenland serve as a crucial sentinel of climate change. Satellites can be used to...