Articles | Volume 19, issue 3
https://doi.org/10.5194/tc-19-1279-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-1279-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Do we still need reflectance? From radiance to snow properties in mountainous terrain: a case study with the EMIT imaging spectrometer
Niklas Bohn
CORRESPONDING AUTHOR
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Edward H. Bair
Civil Group, Leidos, Inc., Reston, VA, USA
Philip G. Brodrick
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Nimrod Carmon
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Robert O. Green
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Thomas H. Painter
Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
David R. Thompson
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Related authors
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Christopher J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
The Cryosphere, 19, 2315–2320, https://doi.org/10.5194/tc-19-2315-2025, https://doi.org/10.5194/tc-19-2315-2025, 2025
Short summary
Short summary
Key to the success of future satellite missions is understanding snowmelt in our warming climate, as this has implications for nearly 2 billion people. An obstacle is that an artifact, called the hook, is often mistaken for soot or dust. Instead, it is caused by three amplifying effects: (1) background reflectance that is too dark, (2) an assumption of level terrain, and (3) differences in optical constants of ice. Sensor calibration and directional effects may also contribute. Solutions are presented.
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Christopher J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
The Cryosphere, 19, 2315–2320, https://doi.org/10.5194/tc-19-2315-2025, https://doi.org/10.5194/tc-19-2315-2025, 2025
Short summary
Short summary
Key to the success of future satellite missions is understanding snowmelt in our warming climate, as this has implications for nearly 2 billion people. An obstacle is that an artifact, called the hook, is often mistaken for soot or dust. Instead, it is caused by three amplifying effects: (1) background reflectance that is too dark, (2) an assumption of level terrain, and (3) differences in optical constants of ice. Sensor calibration and directional effects may also contribute. Solutions are presented.
Riley Duren, Daniel Cusworth, Alana Ayasse, Kate Howell, Alex Diamond, Tia Scarpelli, Jinsol Kim, Kelly O'neill, Judy Lai-Norling, Andrew Thorpe, Sander R. Zandbergen, Lucas Shaw, Mark Keremedjiev, Jeff Guido, Paul Giuliano, Malkam Goldstein, Ravi Nallapu, Geert Barentsen, David R. Thompson, Keely Roth, Daniel Jensen, Michael Eastwood, Frances Reuland, Taylor Adams, Adam Brandt, Eric A. Kort, James Mason, and Robert O. Green
EGUsphere, https://doi.org/10.5194/egusphere-2025-2275, https://doi.org/10.5194/egusphere-2025-2275, 2025
Short summary
Short summary
We describe the Carbon Mapper emissions monitoring system including methane and carbon dioxide observations from the constellation of Tanager hyperspectral satellites, a global monitoring strategy optimized for enabling mitigation impact at the scale of individual facilities, and a data platform that delivers timely and transparent information for diverse stakeholders. We present early findings from Tanager-1 including the use of our data to locate and repair a leaking oil and gas pipeline.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Melani Hernández-Chiriboga, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert Green, Paul Ginoux, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 9155–9176, https://doi.org/10.5194/acp-24-9155-2024, https://doi.org/10.5194/acp-24-9155-2024, 2024
Short summary
Short summary
In this research, we studied the dust-emitting properties of crusts and aeolian ripples from the Mojave Desert. These properties are key to understanding the effect of dust upon climate. We found two different playa lakes according to the groundwater regime, which implies differences in crusts' cohesion state and mineralogy, which can affect the dust emission potential and properties. We also compare them with Moroccan Sahara crusts and Icelandic top sediments.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert O. Green, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 6883–6910, https://doi.org/10.5194/acp-24-6883-2024, https://doi.org/10.5194/acp-24-6883-2024, 2024
Short summary
Short summary
The knowledge of properties from dust emitted in high latitudes such as in Iceland is scarce. This study focuses on the particle size, mineralogy, cohesion, and iron mode of occurrence and reflectance spectra of dust-emitting sediments. Icelandic top sediments have lower cohesion state, coarser particle size, distinctive mineralogy, and 3-fold bulk Fe content, with a large presence of magnetite compared to Saharan crusts.
María Gonçalves Ageitos, Vincenzo Obiso, Ron L. Miller, Oriol Jorba, Martina Klose, Matt Dawson, Yves Balkanski, Jan Perlwitz, Sara Basart, Enza Di Tomaso, Jerónimo Escribano, Francesca Macchia, Gilbert Montané, Natalie M. Mahowald, Robert O. Green, David R. Thompson, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 8623–8657, https://doi.org/10.5194/acp-23-8623-2023, https://doi.org/10.5194/acp-23-8623-2023, 2023
Short summary
Short summary
Dust aerosols affect our climate differently depending on their mineral composition. We include dust mineralogy in an atmospheric model considering two existing soil maps, which still have large associated uncertainties. The soil data and the distribution of the minerals in different aerosol sizes are key to our model performance. We find significant regional variations in climate-relevant variables, which supports including mineralogy in our current models and the need for improved soil maps.
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023, https://doi.org/10.5194/tc-17-2629-2023, 2023
Short summary
Short summary
To test the title question, three snow cover products were used in a snow model. Contrary to previous work, higher-spatial-resolution snow cover products only improved the model accuracy marginally. Conclusions are as follows: (1) snow cover and albedo from moderate-resolution sensors continue to provide accurate forcings and (2) finer spatial and temporal resolutions are the future for Earth observations, but existing moderate-resolution sensors still offer value.
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023, https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Short summary
We comprehensively evaluated the snow simulations in E3SM land model over the western United States in terms of spatial patterns, temporal correlations, interannual variabilities, elevation gradients, and change with forest cover of snow properties and snow phenology. Our study underscores the need for diagnosing model biases and improving the model representations of snow properties and snow phenology in mountainous areas for more credible simulation and future projection of mountain snowpack.
Timbo Stillinger, Karl Rittger, Mark S. Raleigh, Alex Michell, Robert E. Davis, and Edward H. Bair
The Cryosphere, 17, 567–590, https://doi.org/10.5194/tc-17-567-2023, https://doi.org/10.5194/tc-17-567-2023, 2023
Short summary
Short summary
Understanding global snow cover is critical for comprehending climate change and its impacts on the lives of billions of people. Satellites are the best way to monitor global snow cover, yet snow varies at a finer spatial resolution than most satellite images. We assessed subpixel snow mapping methods across a spectrum of conditions using airborne lidar. Spectral-unmixing methods outperformed older operational methods and are ready to to advance snow cover mapping at the global scale.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Edward H. Bair, Jeff Dozier, Charles Stern, Adam LeWinter, Karl Rittger, Alexandria Savagian, Timbo Stillinger, and Robert E. Davis
The Cryosphere, 16, 1765–1778, https://doi.org/10.5194/tc-16-1765-2022, https://doi.org/10.5194/tc-16-1765-2022, 2022
Short summary
Short summary
Understanding how snow and ice reflect solar radiation (albedo) is important for global climate. Using high-resolution topography, darkening from surface roughness (apparent albedo) is separated from darkening by the composition of the snow (intrinsic albedo). Intrinsic albedo is usually greater than apparent albedo, especially during melt. Such high-resolution topography is often not available; thus the use of a shade component when modeling mixtures is advised.
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 15, 117–129, https://doi.org/10.5194/amt-15-117-2022, https://doi.org/10.5194/amt-15-117-2022, 2022
Short summary
Short summary
Sunlight can pass diagonally through the atmosphere, cutting through the 3-D water vapour field in a way that
smears2-D maps of imaging spectroscopy vapour retrievals. In simulations we show how this smearing is
towardsor
away fromthe Sun, so calculating
across the solar direction allows sub-kilometre information about water vapour's spatial scaling to be calculated. This could be tested by airborne campaigns and used to obtain new information from upcoming spaceborne data products.
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 14, 5555–5576, https://doi.org/10.5194/amt-14-5555-2021, https://doi.org/10.5194/amt-14-5555-2021, 2021
Short summary
Short summary
Modern and upcoming hyperspectral imagers will take images with spatial resolutions as fine as 20 m. They can retrieve column water vapour, and we show evidence that from these column measurements you can get statistics of planetary boundary layer (PBL) water vapour. This is important information for climate models that need to account for sub-grid mixing of water vapour near the surface in their PBL schemes.
David R. Thompson, Brian H. Kahn, Philip G. Brodrick, Matthew D. Lebsock, Mark Richardson, and Robert O. Green
Atmos. Meas. Tech., 14, 2827–2840, https://doi.org/10.5194/amt-14-2827-2021, https://doi.org/10.5194/amt-14-2827-2021, 2021
Short summary
Short summary
Concentrations of water vapor in the atmosphere vary dramatically over space and time. Mapping this variability can provide insights into atmospheric processes that help us understand atmospheric processes in the Earth system. Here we use a new measurement strategy based on imaging spectroscopy to map atmospheric water vapor concentrations at very small spatial scales. Experiments demonstrate the accuracy of this technique and some initial results from an airborne remote sensing experiment.
Longlei Li, Natalie M. Mahowald, Ron L. Miller, Carlos Pérez García-Pando, Martina Klose, Douglas S. Hamilton, Maria Gonçalves Ageitos, Paul Ginoux, Yves Balkanski, Robert O. Green, Olga Kalashnikova, Jasper F. Kok, Vincenzo Obiso, David Paynter, and David R. Thompson
Atmos. Chem. Phys., 21, 3973–4005, https://doi.org/10.5194/acp-21-3973-2021, https://doi.org/10.5194/acp-21-3973-2021, 2021
Short summary
Short summary
For the first time, this study quantifies the range of the dust direct radiative effect due to uncertainty in the soil mineral abundance using all currently available information. We show that the majority of the estimated direct radiative effect range is due to uncertainty in the simulated mass fractions of iron oxides and thus their soil abundance, which is independent of the model employed. We therefore prove the necessity of considering mineralogy for understanding dust–climate interactions.
Jakob Borchardt, Konstantin Gerilowski, Sven Krautwurst, Heinrich Bovensmann, Andrew K. Thorpe, David R. Thompson, Christian Frankenberg, Charles E. Miller, Riley M. Duren, and John Philip Burrows
Atmos. Meas. Tech., 14, 1267–1291, https://doi.org/10.5194/amt-14-1267-2021, https://doi.org/10.5194/amt-14-1267-2021, 2021
Short summary
Short summary
The AVIRIS-NG hyperspectral imager has been used successfully to identify and quantify anthropogenic methane sources utilizing different retrieval and inversion methods. Here, we examine the adaption and application of the WFM-DOAS algorithm to AVIRIS-NG measurements to retrieve local methane column enhancements, compare the results with other retrievals, and quantify the uncertainties resulting from the retrieval method. Additionally, we estimate emissions from five detected methane plumes.
Macey W. Sandford, David R. Thompson, Robert O. Green, Brian H. Kahn, Raffaele Vitulli, Steve Chien, Amruta Yelamanchili, and Winston Olson-Duvall
Atmos. Meas. Tech., 13, 7047–7057, https://doi.org/10.5194/amt-13-7047-2020, https://doi.org/10.5194/amt-13-7047-2020, 2020
Short summary
Short summary
We demonstrate an onboard cloud-screening approach to significantly reduce the amount of cloud-contaminated data transmitted from orbit. We have produced location-specific models that improve performance by taking into account the unique cloud statistics in different latitudes. We have shown that screening clouds based on their location or surface type will improve the ability for a cloud-screening tool to improve the volume of usable science data.
Cited articles
Aoki, T., Fukabori, M., Hachikubo, A., Tachibana, Y., and Nishio, F.: Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface, J. Geophys. Res.-Atmos., 105, 10219–10236, https://doi.org/10.1029/2003JD003506, 2000. a
Bair, E. H., Stillinger, T., and Dozier, J.: Snow Property Inversion From Remote Sensing (SPIReS): a generalized multispectral unmixing approach with examples from MODIS and landsat 8 OLI, IEEE T. Geosci. Remote, 59, 7270–7284, https://doi.org/10.1109/TGRS.2020.3040328, 2021. a
Bair, E. H., Roberts, D. A., Thompson, D. R., Brodrick, P. G., Wilder, B. A., Bohn, N., Crawford, C. J., Carmon, N., Vuyovich, C. M., and Dozier, J.: Brief communication: Not as dirty as they look, flawed airborne and satellite snow spectra, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-1681, 2024. a, b
Balkanski, Y., Schulz, M., Claquin, T., and Guibert, S.: Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81–95, https://doi.org/10.5194/acp-7-81-2007, 2007. a
Berk, A. and Hawes, F.: Validation of MODTRAN6 and its line-by-line algorithm, J. Quant. Spectrosc. Ra., 203, 542–556, https://doi.org/10.1016/j.jqsrt.2017.03.004, 2017. a
Bohn, N., Painter, T. H., Thompson, D. R., Carmon, N., Susiluoto, J., Turmon, M. J., Helmlinger, M. C., Green, R. O., Cook, J. M., and Guanter, L.: Optimal estimation of snow and ice surface parameters from imaging spectroscopy measurements, Remote Sens. Environ., 264, 112613, https://doi.org/10.1016/j.rse.2021.112613, 2021. a, b, c, d, e
Bohn, N., Mauro, B. D., Colombo, R., Thompson, D. R., Susiluoto, J., Carmon, N., Turmon, M. J., and Guanter, L.: Glacier ice surface properties in South-West Greenland ice sheet: first estimates from PRISMA imaging spectroscopy data, J. Geophys. Res.-Biogeo., 127, e2021JG006718, https://doi.org/10.1029/2021JG006718, 2022. a, b, c, d, e
Bohn, N., Bair, E. H., Brodrick, P. G., Carmon, N., Green, R. O., Painter, T. H., and Thompson, D. R.: Estimating dust on snow – application of a coupled atmosphere-surface model to spaceborne emit imaging spectrometer data, in: IGARSS 2023–2023 IEEE International Geoscience and Remote Sensing Symposium, 16–21 July 2023, Pasadena, CA, USA, 685–688, https://doi.org/10.1109/IGARSS52108.2023.10283084, 2023. a, b, c, d, e, f
Brodrick, P. G., Thompson, D. R., Bohn, N., Carmon, N., Eckert, R.,Montgomery, J., Wurster, K., Vaughn, N., and Greenberg, E.: isofit (v3.4.0), Zenodo [code], https://doi.org/10.5281/zenodo.14907697, 2025. a
Carmon, N., Berk, A., Bohn, N., Brodrick, P. G., Kalashnikova, O., Nguyen, H., Thompson, D. R., and Turmon, M.: Unified topographic and atmospheric correction for remote imaging spectroscopy, Frontiers in Remote Sensing, 3, 916155, https://doi.org/10.3389/frsen.2022.916155, 2022. a, b, c
Carmon, N., Berk, A., Bohn, N., Brodrick, P. G., Dozier, J., Johnson, M., Miller, C. E., Thompson, D. R., Turmon, M., Bachmann, C. M., Green, R. O., Eckert, R., Liggett, E., Nguyen, H., Ochoa, F., Okin, G. S., Samuels, R., Schimel, D., Song, J. J., and Susiluoto, J.: Shape from spectra, Remote Sens. Environ., 288, 113497, https://doi.org/10.1016/j.rse.2023.113497, 2023. a, b, c, d, e
Cawse-Nicholson, K., Townsend, P. A., Schimel, D., Assiri, A. M., Blake, P. L., Buongiorno, M. F., Campbell, P., Carmon, N., Casey, K. A., Correa-Pabón, R. E., Dahlin, K. M., Dashti, H., Dennison, P. E., Dierssen, H., Erickson, A., Fisher, J. B., Frouin, R., Gatebe, C. K., Gholizadeh, H., Gierach, M., Glenn, N. F., Goodman, J. A., Griffith, D. M., Guild, L., Hakkenberg, C. R., Hochberg, E. J., Holmes, T. R., Hu, C., Huemmrich, G. H. K. F., Kudela, R. M., Kokaly, R. F., Lee, C. M., Martin, R., Miller, C. E., Moses, W. J., Muller-Karger, F. E., Ortiz, J. D., Otis, D. B., Pahlevan, N., Painter, T. H., Pavlick, R., Poulter, B., Qi, Y., Realmuto, V. J., Roberts, D., Schaepman, M. E., Schneider, F. D., Schwandner, F. M., Serbin, S. P., Shiklomanov, A. N., Stavros, N., Thompson, D. R., Torres-Perez, J. L., Turpie, K. R., Tzortziou, M., Ustin, S., Yu, Q., Yusup, Y., Zhang, Q., and the SBG Algorithms Working Group: NASA's surface biology and geology designated observable: A perspective on surface imaging algorithms, Remote Sens. Environ., 257, 112349, https://doi.org/10.1016/j.rse.2021.112349, 2021. a
Chevrollier, L.-A., Cook, J. M., Halbach, L., Jakobsen, H., Benning, L. G., Anesio, A. M., and Tranter, M.: Light absorption and albedo reduction by pigmented microalgae on snow and ice, J. Glaciol., 69, 1–9, https://doi.org/10.1016/j.rse.2023.113497, 2022. a, b, c
Clarke, A. D. and Noone, K. J.: Soot in the Artic snowpack: A cause for perturbations in radiative transfer, Atmos. Environ., 19, 2045–2053, https://doi.org/10.1016/0004-6981(85)90113-1, 1985. a
Connelly, D. S., Thompson, D. R., Mahowald, N. M., Li, L., Carmon, N., Okin, G. S., and Green, R. O.: The EMIT mission information yield for mineral dust radiative forcing, Remote Sens. Environ., 258, 112380, https://doi.org/10.1017/jog.2022.64, 2021. a, b
Cook, J. M., Hodson, A. J., Gardner, A. S., Flanner, M., Tedstone, A. J., Williamson, C., Irvine-Fynn, T. D. L., Nilsson, J., Bryant, R., and Tranter, M.: Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo, The Cryosphere, 11, 2611–2632, https://doi.org/10.5194/tc-11-2611-2017, 2017. a
Cook, J. M., Tedstone, A. J., Williamson, C., McCutcheon, J., Hodson, A. J., Dayal, A., Skiles, M., Hofer, S., Bryant, R., McAree, O., McGonigle, A., Ryan, J., Anesio, A. M., Irvine-Fynn, T. D. L., Hubbard, A., Hanna, E., Flanner, M., Mayanna, S., Benning, L. G., van As, D., Yallop, M., McQuaid, J. B., Gribbin, T., and Tranter, M.: Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet, The Cryosphere, 14, 309–330, https://doi.org/10.5194/tc-14-309-2020, 2020. a, b
Cordero, R. R., Sepúlveda, E., Feron, S., Wang, C., Damiani, A., Fernandoy, F., Neshyba, S., Rowe, P. M., Asencio, V., Carrasco, J., Alfonso, J. A., MacDonell, S., Seckmeyer, G., Carrera, J. M., Jorquera, J., Llanillo, P., Dana, J., Khan, A. L., and Casassa, G.: Black carbon in the Southern Andean snowpack, Environ. Res. Lett., 17, 044042, https://doi.org/10.1088/1748-9326/ac5df0, 2022. a
Cressie, N.: Mission CO2ntrol: a statistical scientist's role in remote sensing of atmospheric carbon dioxide, J. Am. Stat. Assoc., 113, 152–168, https://doi.org/10.1080/01621459.2017.1419136, 2018. a
Dang, C., Fu, Q., and Warren, S. G.: Effect of snow grain shape on snow albedo, J. Atmos. Sci., 73, 3573–3583, https://doi.org/10.1175/JAS-D-15-0276.1, 2016. a
Demasy, C., Boye, M., Lai, B., Burckel, P., Feng, Y., Losno, R., Borensztajn, S., and Besson, P.: Iron dissolution from Patagonian dust in the Southern Ocean: under present and future conditions, Frontiers in Marine Science, 11, 1363088, https://doi.org/10.3389/fmars.2024.1363088, 2024. a
Di Biagio, C., Formenti, P., Balkanski, Y., Caponi, L., Cazaunau, M., Pangui, E., Journet, E., Nowak, S., Andreae, M. O., Kandler, K., Saeed, T., Piketh, S., Seibert, D., Williams, E., and Doussin, J.-F.: Complex refractive indices and single-scattering albedo of global dust aerosols in the shortwave spectrum and relationship to size and iron content, Atmos. Chem. Phys., 19, 15503–15531, https://doi.org/10.5194/acp-19-15503-2019, 2019. a
Di Mauro, B.: A darker cryosphere in a warming world, Nat. Clim. Change, 10, 979–980, https://doi.org/10.1038/s41558-020-00911-9, 2020. a, b
Di Mauro, B., Fava, F., Ferrero, L., Garzonio, R., Baccolo, G., Delmonte, B., and Colombo, R.: Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations, J. Geophys. Res.-Atmos., 120, 6080–6097, https://doi.org/10.1002/2015JD023287, 2015. a, b, c
Di Mauro, B., Baccolo, G., Garzonio, R., Giardino, C., Massabò, D., Piazzalunga, A., Rossini, M., and Colombo, R.: Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps), The Cryosphere, 11, 2393–2409, https://doi.org/10.5194/tc-11-2393-2017, 2017. a
Di Mauro, B., Garzonio, R., Baccolo, G., Franzetti, A., Pittino, F., Leoni, B., Remias, D., Colombo, R., and Rossini, M.: Glacier algae foster ice-albedo feedback in the European Alps, Sci. Rep.-UK, 10, 4739, https://doi.org/10.1038/s41598-020-61762-0, 2020. a
Donahue, C. P., Menounos, B., Viner, N., Skiles, S. M., Beffort, S., Denouden, T., Arriola, S. G., White, R., and Heathfield, D.: Bridging the gap between airborne and spaceborne imaging spectroscopy for mountain glacier surface property retrievals, Remote Sens. Environ., 299, 113849, https://doi.org/10.1016/j.rse.2023.113849, 2023. a
Dozier, J.: Spectral signature of alpine snow cover from the Landsat Thematic Mapper, Remote Sens. Environ., 28, 9–22, https://doi.org/10.1016/0034-4257(89)90101-6, 1989. a, b
Dozier, J., Bair, E. H., Baskaran, L., Brodrick, P. G., Carmon, N., Kokaly, R. F., Miller, C. E., Miner, K. R., Painter, T. H., and Thompson, D. R.: Error and uncertainty degrade topographic corrections of remotely sensed data, J. Geophys. Res.-Biogeo., 127, S25–S37, https://doi.org/10.1029/2022JG007147, 2022. a
Dumont, M., Brun, E., Picard, G., Michou, M., Libois, Q., Petit, J.-R., Geyer, M., Morin, S., and Josse, B.: Contribution of light-absorbing impurities in snow to Greenland's darkening since 2009, Nat. Geosci., 7, 509–512, https://doi.org/10.1038/ngeo2180, 2014. a, b
Dumont, M., Flin, F., Malinka, A., Brissaud, O., Hagenmuller, P., Lapalus, P., Lesaffre, B., Dufour, A., Calonne, N., Rolland du Roscoat, S., and Ando, E.: Experimental and model-based investigation of the links between snow bidirectional reflectance and snow microstructure, The Cryosphere, 15, 3921–3948, https://doi.org/10.5194/tc-15-3921-2021, 2021. a
Figueroa-Villanueva, L., Castro, L., Bolaño-Ortiz, T. R., Flores, R. P., Pacheco-Ferrada, D., and Cereceda-Balic, F.: Changes in snow surface albedo and radiative forcing in the Chilean Central Andes measured by in situ and remote sensing data, Water-Sui., 15, 3198, https://doi.org/10.3390/w15183198, 2023. a
Flanner, M. G. and Zender, C. S.: Snowpack radiative heating: influence on Tibetan Plateau climate, Geophys. Res. Lett., 32, L06501, https://doi.org/10.1029/2004GL022076, 2005. a
Flanner, M. G. and Zender, C. S.: Linking snowpack microphysics and albedo evolution, J. Geophys. Res., 111, D12208, https://doi.org/10.1029/2005JD006834, 2006. a
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, https://doi.org/10.1029/2006JD008003, 2007. a, b, c
Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan, V., and Rasch, P. J.: Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem. Phys., 9, 2481–2497, https://doi.org/10.5194/acp-9-2481-2009, 2009. a
Gardner, A. S. and Sharp, M. J.: A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization, J. Geophys. Res., 115, F01009, https://doi.org/10.1029/2009JF001444, 2010. a
Gasso, S. and Torres, O.: Temporal characterization of dust activity in the Central Patagonia Desert (Years 1964–2017), J. Geophys. Res.-Atmos., 124, 3417–3434, https://doi.org/10.1029/2018JD030209, 2019. a
Gautam, R., Hsu, N. C., Lau, W. K.-M., and Yasunari, T. J.: Satellite observations of desert dust-induced Himalayan snow darkening, Geophys. Res. Lett., 40, 988–993, https://doi.org/10.1002/grl.50226, 2013. a
Gonçalves Ageitos, M., Obiso, V., Miller, R. L., Jorba, O., Klose, M., Dawson, M., Balkanski, Y., Perlwitz, J., Basart, S., Di Tomaso, E., Escribano, J., Macchia, F., Montané, G., Mahowald, N. M., Green, R. O., Thompson, D. R., and Pérez García-Pando, C.: Modeling dust mineralogical composition: sensitivity to soil mineralogy atlases and their expected climate impacts, Atmos. Chem. Phys., 23, 8623–8657, https://doi.org/10.5194/acp-23-8623-2023, 2023. a
Govaerts, Y. M., Wagner, S., Lattanzio, A., and Watts, P.: Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 1. Theory, J. Geophys. Res.-Atmos., 115, D02203, https://doi.org/10.1029/2009JD011779, 2010. a
Green, R.: EMIT L1B At-Sensor Calibrated Radiance and Geolocation Data 60 m V001, NASA EOSDIS Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/EMIT/EMITL1BRAD.001, 2022. a
Green, R. O., Dozier, J., Roberts, D. A., and Painter, T. H.: Spectral snow-reflectance models for grain-size and liquid-water fraction in melting snow for the solar-reflected spectrum, Ann. Glaciol., 34, 71–73, https://doi.org/10.3189/172756402781817987, 2002. a
Green, R. O., Mahowald, N., Ung, C., Thompson, D. R., Bator, L., Bennet, M., Bernas, M., Blackway, N., Bradley, C., Cha, J., Clark, P., Clark, R., Cloud, D., Diaz, E., Ben Dor, E., Duren, R., Eastwood, M., Ehlmann, B. L., Fuentes, L., Ginoux, P., Gross, J., He, Y., Kalashnikova, O., Kert, W., Keymeulen, D., Klimesh, M., Ku, D., Kwong-Fu, H., Liggett, E., Li, L., Lundeen, S., Makowski, M. D., Mazer, A., Miller, R., Mouroulis, P., Oaida, B., Okin, G. S., Ortega, A., Oyake, A., Nguyen, H., Pace, T., Painter, T. H., Pempejian, J., Garcia-Pando, C. P., Pham, T., Phillips, B., Pollock, R., Purcell, R., Realmuto, V., Schoolcraft, J., Sen, A., Shin, S., Shaw, L., Soriano, M., Swayze, G., Thingvold, E., Vaid, A., and Zan, J.: The earth surface mineral dust source investigation: an earth science imaging spectroscopy mission, in: 2020 IEEE Aerospace Conference, 7–14 March 2020, Big Sky, Montana, USA, 1–15, https://doi.org/10.1109/AERO47225.2020.9172731, 2020. a, b
Grenfell, T. C. and Warren, S. G.: Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation, J. Geophys. Res.-Atmos., 104, 31679–31709, https://doi.org/10.1029/1999JD900496, 1999. a, b, c
Grenfell, T. C., Neshyba, S. P., and Warren, S. G.: Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 3. Hollow columns and plates, J. Geophys. Res.-Atmos., 110, 31697–31709, https://doi.org/10.1029/2005JD005811, 2005. a
Guanter, L., Richter, R., and Kaufmann, H.: On the application of the MODTRAN4 atmospheric radiative transfer code to optical remote sensing, Int. J. Remote Sens., 30, 1407–1424, https://doi.org/10.1080/01431160802438555, 2009. a
Hadley, O. L., Corrigan, C. E., Kirchstetter, T. W., Cliff, S. S., and Ramanathan, V.: Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat, Atmos. Chem. Phys., 10, 7505–7513, https://doi.org/10.5194/acp-10-7505-2010, 2010. a
Hao, D., Bisht, G., Rittger, K., Bair, E., He, C., Huang, H., Dang, C., Stillinger, T., Gu, Y., Wang, H., Qian, Y., and Leung, L. R.: Improving snow albedo modeling in the E3SM land model (version 2.0) and assessing its impacts on snow and surface fluxes over the Tibetan Plateau, Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, 2023. a
He, C., Takano, Y., Liou, K.-N., Yang, P., Li, Q., and Chen, F.: Impact of snow grain shape and black carbon–snow internal mixing on snow optical properties: parameterizations for climate models, J. Climate, 30, 10019–10036, https://doi.org/10.1175/JCLI-D-17-0300.1, 2017. a
Hobbs, J., Braverman, A., Cressie, N., Granat, R., and Gunson, M.: Simulation-based uncertainty quantification for estimating atmospheric CO2 from satellite data, Int. J. Uncertain. Quan., 5, 956–985, https://doi.org/10.1137/16M1060765, 2017. a
Kaspari, S., Painter, T. H., Gysel, M., Skiles, S. M., and Schwikowski, M.: Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings, Atmos. Chem. Phys., 14, 8089–8103, https://doi.org/10.5194/acp-14-8089-2014, 2014. a
Kaspari, S., Skiles, S. M., Delaney, I., Dixon, D., and Painter, T. H.: Accelerated glacier melt on Snow Dome, Mt. Olympus, Washington, USA due to deposition of black carbon and mineral dust from wildfire, J. Geophys. Res.-Atmos., 120, 2793–2807, https://doi.org/10.1002/2014JD022676, 2015. a
Kohshima, S., Takeuchi, N., Uetake, J., Shiraiwa, T., Uemura, R., Yoshida, N., Matoba, S., and Godoi, M. A.: Estimation of net accumulation rate at a Patagonian glacier by ice core analyses using snow algae, Global Planet. Change, 59, 236–244, https://doi.org/10.1016/j.gloplacha.2006.11.014, 2007. a
Kokhanovsky, A. A. and Zege, E. P.: Scattering optics of snow, Appl. Optics, 43, 1589–1602, https://doi.org/10.1364/AO.43.001589, 2004. a
Kokhanovsky, A., Mauro, B. D., and Colombo, R.: Snow surface properties derived from PRISMA satellite data over the Nansen Ice Shelf (East Antarctica), Frontiers in Environmental Science, 10, 904585, https://doi.org/10.3389/fenvs.2022.904585, 2022. a, b
Lawrence, C. R., Painter, T. H., Landry, C. C., and Neff, J. C.: Contemporary geochemical composition and flux of aeolian dust to the San Juan Mountains, Colorado, US, J. Geophys. Res.-Biogeo., 115, G03007, https://doi.org/10.1029/2009JG001077, 2010. a, b
Lemke, P., Ren, J., Alley, R. B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R. H., and Zhang, T.: Observations: changes in snow, ice and frozen ground, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change edited by: Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, Cambridge University Press, Cambridge, UK and New York, NY, USA, ISBN 978 0521 88009-1, 2007. a
Li, J., Okin, G. S., Skiles, S. M., and Painter, T. H.: Relating variation of dust on snow to bare soil dynamics in the western United States, Environ. Res. Lett., 8, 44–55, https://doi.org/10.1088/1748-9326/8/4/044054, 2013. a, b
Louis, J., Devignot, O., and Pessiot, L.: S2 MPC – Level-2A Algorithm Theoretical Basis Document, Tech. Rep. S2-PDGS-MPC-ATBD-L2A – 2.10, European Space Agency (ESA), Noordwijk, the Netherlands, S2-PDGS-MPC-L2A-SUM-V2.8, 2021. a
Mahowald, N., Albani, S., Kok, J. F., Engelstaeder, S., Scanza, R., Ward, D. S., and Flanner, M. G.: The size distribution of desert dust aerosols and its impact on the Earth system, Aeolian Res., 15, 53–71, https://doi.org/10.1016/j.aeolia.2013.09.002, 2014. a
Malinka, A. V.: Light scattering in porous materials: geometrical optics and stereological approach, J. Quant. Spectrosc. Ra., 141, 14–23, https://doi.org/10.1016/j.jqsrt.2014.02.022, 2014. a
Malinka, A. V.: Stereological approach to radiative transfer in porous materials. Application to the optics of snow, J. Quant. Spectrosc. Ra., 295, 108410, https://doi.org/10.1016/j.jqsrt.2022.108410, 2023. a
Martonchik, J. V., Bruegge, C. J., and Strahler, A.: A review of reflectance nomenclature used in remote sensing, Remote Sensing Reviews, 19, 9–20, https://doi.org/10.1080/02757250009532407, 2000. a
McEwan, C., Borrero, L. A., and Prieto, A.: Patagonia: Natural History, Prehistory, and Ethnography at the Uttermost End of the Earth, Princeton University Press, Princeton, NJ, USA, ISBN-13 978-0691601625, 1997. a
Miller, R. L., Tegen, I., and Perlwitz, J.: Surface radiative forcing by soil dust aerosols and the hydrologic cycle, J. Geophys. Res., 109, D04203, https://doi.org/10.1029/2003JD004085, 2004. a
Naegeli, K., Damm, A., Huss, M., Schaepman, M., and Hoelzle, M.: Imaging spectroscopy to assess the composition of ice surface materials and their impact on glacier mass balance, Remote Sens. Environ., 168, 388–402, https://doi.org/10.1016/j.rse.2015.07.006, 2015. a
National Academies of Sciences, Engineering, and Medicine: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space, National Academies Press, Washington, DC, https://doi.org/10.17226/24938, 2018. a
Neshyba, S. P., Grenfell, T. C., and Warren, S. G.: Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and plates, J. Geophys. Res.-Atmos., 108, 4448, https://doi.org/10.1029/2002JD003302, 2003. a
Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T.: Geometrical Considerations and Nomenclature for Reflectance, National Bureau of Standards, US Department of Commerce, Washington, DC, USA, https://doi.org/10.6028/NBS.MONO.160, 1977. a
Oerlemans, J., Giesen, R. H., and Broeke, M. R. V. D.: Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland), J. Glaciol., 55, 729–736, https://doi.org/10.3189/002214309789470969, 2009. a
Painter, T. H. and Dozier, J.: The effect of anisotropic reflectance on imaging spectroscopy of snow properties, Remote Sens. Environ., 89, 409–422, https://doi.org/10.1016/j.rse.2003.09.007, 2004a. a, b, c, d
Painter, T. H. and Dozier, J.: Measurements of the hemispherical-directional reflectance of snow at fine spectral and angular resolution, J. Geophys. Res., 109, D18115, https://doi.org/10.1029/2003JD004458, 2004b. a, b, c
Painter, T. H., Duval, B., Thomas, W. H., Mendez, M., Heintzelman, S., and Dozier, J.: Detection and quantification of snow algae with an airborne imaging spectrometer, Appl. Environ. Microb., 67, 5267–5272, https://doi.org/10.1128/AEM.67.11.5267-5272.2001, 2001. a, b
Painter, T. H., Dozier, J., Roberts, D. A., Davis, R. E., and Green, R. O.: Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data, Remote Sens. Environ., 85, 64–77, https://doi.org/10.1016/S0034-4257(02)00187-6, 2003. a
Painter, T. H., Bryant, A. C., and Skiles, S. M.: Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data, Geophys. Res. Lett., 39, L17502, https://doi.org/10.1029/2012GL052457, 2012a. a, b
Painter, T. H., Skiles, S. M., Deems, J. S., Bryant, A. C., and Landry, C. C.: Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations, Water Resour. Res., 48, W07522, https://doi.org/10.1029/2012WR011985, 2012b.. a, b, c
Painter, T. H., Flanner, M. G., Kaser, G., Marzeion, B., VanCuren, R. A., and Abdalati, W.: End of the Little Ice Age in the Alps forced by industrial black carbon, P. Natl. Acad. Sci. USA, 110, 15216–15221, https://doi.org/10.1073/pnas.1302570110, 2013a. a, b
Picard, G., Dumont, M., Lamare, M., Tuzet, F., Larue, F., Pirazzini, R., and Arnaud, L.: Spectral albedo measurements over snow-covered slopes: theory and slope effect corrections, The Cryosphere, 14, 1497–1517, https://doi.org/10.5194/tc-14-1497-2020, 2020. a, b, c, d
Polashenski, C. M., Dibb, J. E., Flanner, M. G., Chen, J. Y., Courville, Z. R., Lai, A. M., Schauer, J. J., Shafer, M. M., and Bergin, M.: Neither dust nor black carbon causing apparent albedo decline in Greenland's dry snow zone: implications for MODIS C5 surface reflectance, Geophys. Res. Lett., 42, 9319–9327, https://doi.org/10.1002/2015GL065912, 2015. a
Prospero, J. M.: Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Rev. Geophys., 40, 9319–9327, https://doi.org/10.1029/2000RG000095, 2002. a
Rast, M., Ananasso, C., Bach, H., Dor, E. B., Chabrillat, S., Colombo, R., Bello, U. D., Feret, J.-B., Giardino, C., Green, R. O., Guanter, L., Marsh, S., Nieke, J., Ong, C., Rum, G., Schaepman, M., Schlerf, M., Skidmore, A. K., and Strobl, P.: Copernicus Hyperspectral Imaging Mission for the Environment – Mission Requirements Document, Tech. Rep. ESA-EOPSM-CHIM-MRD-3216, European Space Agency (ESA), Noordwijk, the Netherlands, ESA-EOPSM-CHIM-MRD-3216, 2019. a
Remias, D., Holzinger, A., Aigner, S., and Lütz, C.: Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high arctic), Polar Biol., 35, 899–908, https://doi.org/10.1007/s00300-011-1135-6, 2012. a
Reynolds, R. L., Goldstein, H. L., Bryant, B. M. M. A. C., Skiles, S. M., Kokaly, R. F., Flagg, C. B., Yauk, K., Berquó, T., Breit, G., Ketterer, M., Fernandez, D., Miller, M. E., and Painter, T. H.: Composition of dust deposited to snow cover in the Wasatch Range (Utah, USA): controls on radiative properties of snow cover and comparison to some dust-source sediments, Aeolian Res., 15, 73–90, https://doi.org/10.1016/j.aeolia.2013.08.001, 2014. a
Rhoades, C., Elder, K., and Greene, E.: The influence of an extensive dust event on snow chemistry in the Southern Rocky Mountains, Arct. Antarct. Alp. Res., 42, 98–105, https://doi.org/10.1657/1938-4246-42.1.98, 2010. a
Richter, R. and Schläpfer, D.: Atmospheric/Topographic Correction for Satellite Imagery (ATCOR-2/3, Version 9.1.1, February 2017) Theoretical Background Document, DLR-IB 565-01/2017, 2017. a
Rowe, P. M., Cordero, R. R., Warren, S. G., Stewart, E., Doherty, S. J., Pankow, A., Schrempf, M., Casassa, G., Carrasco, J., Pizarro, J., MacDonell, S., Damiani, A., Lambert, F., Rondanelli, R., Huneeus, N., Fernandoy, F., and Neshyba, S.: Black carbon and other light-absorbing impurities in snow in the Chilean Andes, Sci. Rep.-UK, 9, 4008, https://doi.org/10.1038/s41598-019-39312-0, 2019. a
Santini, F. and Palombo, A.: Impact of topographic correction on PRISMA, Sentinel 2, and Landsat 8 images, Remote Sens.-Basel, 14, 3903, https://doi.org/10.3390/rs14163903, 2022. a
Schepanski, K.: Transport of mineral dust and its impact on climate, Geosciences, 8, 151, https://doi.org/10.3390/geosciences8050151, 2018. a
Seidel, F. C., Rittger, K., Skiles, S. M., Molotch, N. P., and Painter, T. H.: Case study of spatial and temporal variability of snow cover, grain size, albedo and radiative forcing in the Sierra Nevada and Rocky Mountain snowpack derived from imaging spectroscopy, The Cryosphere, 10, 1229–1244, https://doi.org/10.5194/tc-10-1229-2016, 2016. a, b, c
Singh, D. and Flanner, M. G.: An improved carbon dioxide snow spectral albedo model: application to Martian conditions, J. Geophys. Res.-Planet., 121, 2037–2054, https://doi.org/10.1002/2016JE005040, 2016. a
Skiles, S. M. and Painter, T. H.: Daily evolution in dust and black carbon content, snow grain size, and snow albedo during snowmelt, Rocky Mountains, Colorado, J. Glaciol., 63, 118–132, https://doi.org/10.1017/jog.2016.125, 2017. a, b
Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M., and Painter, T. H.: Radiative forcing by light-absorbing particles in snow, Nat. Clim. Change, 8, 964–971, https://doi.org/10.1038/s41558-018-0296-5, 2018. a
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Optics, 27, 2502–2509, https://doi.org/10.1364/AO.27.002502, 1988. a
Sterle, K. M., McConnell, J. R., Dozier, J., Edwards, R., and Flanner, M. G.: Retention and radiative forcing of black carbon in eastern Sierra Nevada snow, The Cryosphere, 7, 365–374, https://doi.org/10.5194/tc-7-365-2013, 2013. a
Strub, G., Schaepman, M. E., Knyazikhin, Y., and Itten, K. I.: Evaluation of spectrodirectional Alfalfa Canopy Data acquired during DAISEX'99, IEEE T. Geosci. Remote, 41, 1034–1042, https://doi.org/10.1109/TGRS.2003.811555, 2003. a
Takeuchi, N. and Kohshima, S.: A snow algal community on Tyndall Glacier in the Southern Patagonia Icefield, Chile, Arct. Antarct. Alp. Res., 36, 92–99, https://doi.org/10.1657/1523-0430(2004)036[0092:ASACOT]2.0.CO;2, 2004. a
Thompson, D. R., Green, R. O., Bradley, C., Brodrick, P. G., Mahowald, N., Dor, E. B., Bennett, M., Bernas, M., Carmon, N., Chadwick, K. D., Clark, R. N., Coleman, R. W., Cox, E., Diaz, E., Eastwood, M. L., Eckert, R., Ehlmann, B. L., Ginoux, P., Ageitos, M. G., Grant, K., Guanter, L., Pearlshtien, D. H., Helmlinger, M., Herzog, H., Hoefen, T., Huang, Y., Keebler, A., Kalashnikova, O., Keymeulen, D., Kokaly, R., Klose, M., Li, L., Lundeen, S. R., Meyer, J., Middleton, E., Miller, R. L., Mouroulis, P., Oaida, B., Obiso, V., Ochoa, F., Olson-Duvall, W., Okin, G. S., Painter, T. H., García-Pando, C. P., Pollock, R., Realmuto, V., Shaw, L., Sullivan, P., Swayze, G., Thingvold, E., Thorpe, A. K., Vannan, S., Villarreal, C., Ung, C., Wilson, D. W., and Zandbergen, S.: On-orbit calibration and performance of the EMIT imaging spectrometer, Remote Sens. Environ., 303, 113986, https://doi.org/10.1016/j.rse.2023.113986, 2024. a, b
Verhoef, W. and Bach, H.: Coupled soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data, Remote Sens. Environ., 109, 166–182, https://doi.org/10.1016/j.rse.2006.12.013, 2007. a
Vermote, E. F., Tanré, D., Deuzé, J. L., Herman, M., and Morcrette, J. J.: Second simulation of the satellite signal in the solar spectrum, 6S: an overview, IEEE T. Geosci. Remote, 35, 675–686, https://doi.org/10.1109/36.581987, 1997. a
Warren, S. G.: Optical properties of snow, Rev. Geophys., 20, 67–89, https://doi.org/10.1029/RG020i001p00067, 1982. a, b
Warren, S. G.: Can black carbon in snow be detected by remote sensing?, J. Geophys. Res.-Atmos., 118, 779–786, https://doi.org/10.1029/2012JD018476, 2013. a
Warren, S. G.: Optical properties of snow and ice, Philos. T. Roy. Soc. A, 337, 161, https://doi.org/10.1098/rsta.2018.0161, 2019. a, b
Whicker, C. A., Flanner, M. G., Dang, C., Zender, C. S., Cook, J. M., and Gardner, A. S.: SNICAR-ADv4: a physically based radiative transfer model to represent the spectral albedo of glacier ice, The Cryosphere, 16, 1197–1220, https://doi.org/10.5194/tc-16-1197-2022, 2022. a
Wientjes, I. G. M., Van de Wal, R. S. W., Reichart, G. J., Sluijs, A., and Oerlemans, J.: Dust from the dark region in the western ablation zone of the Greenland ice sheet, The Cryosphere, 5, 589–601, https://doi.org/10.5194/tc-5-589-2011, 2011. a
Wilder, B. A., Meyer, J., Enterkine, J., and Glenn, N. F.: Improved snow property retrievals by solving for topography in the inversion of at-sensor radiance measurements, The Cryosphere, 18, 5015–5029, https://doi.org/10.5194/tc-18-5015-2024, 2024. a, b, c, d
Williamson, C. J., Anesio, A. M., Cook, J., Tedstone, A., Poniecka, E., Holland, A., Fagan, D., Tranter, M., and Yallop, M. L.: Ice algal bloom development on the surface of the Greenland Ice Sheet, FEMS Microbiol. Ecol., 94, fiy025, https://doi.org/10.1093/femsec/fiy025, 2018. a
Yallop, M. L., Anesio, A. M., Perkins, R. G., Cook, J. M., Telling, J., Fagan, D., MacFarlane, J., Stibal, M., Barker, G., Bellas, C., Hodson, A., Tranter, M., Wadham, J., and Roberts, N. W.: Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet, ISME J., 6, 2302–2313, https://doi.org/10.1038/ismej.2012.107, 2012. a
Yin, H., Tan, B., Frantz, D., and Radeloff, V. C.: Integrated topographic corrections improve forest mapping using Landsat imagery, Int. J. Appl. Earth Obs., 108, 102716, https://doi.org/10.1016/j.jag.2022.102716, 2022. a
Short summary
A new type of Earth-observing satellite is measuring reflected sunlight in all its colors. These measurements can be used to characterize snow properties, which give us important information about climate change. In our work, we emphasize the difficulties of obtaining these properties from rough mountainous regions and present a solution to the problem. Our research was inspired by the growing number of new satellite technologies and the increasing challenges associated with climate change.
A new type of Earth-observing satellite is measuring reflected sunlight in all its colors. These...