Articles | Volume 18, issue 11
https://doi.org/10.5194/tc-18-4971-2024
https://doi.org/10.5194/tc-18-4971-2024
Research article
 | 
06 Nov 2024
Research article |  | 06 Nov 2024

Thwaites Glacier thins and retreats fastest where ice-shelf channels intersect its grounding zone

Allison M. Chartrand, Ian M. Howat, Ian R. Joughin, and Benjamin E. Smith

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1132', Adrian Luckman, 23 May 2024
  • RC2: 'Comment on egusphere-2024-1132', Anonymous Referee #2, 11 Jun 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to minor revisions (review by editor) (22 Jul 2024) by Reinhard Drews
AR by Allison Chartand on behalf of the Authors (16 Aug 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to technical corrections (29 Aug 2024) by Reinhard Drews
AR by Allison Chartand on behalf of the Authors (06 Sep 2024)  Author's response   Manuscript 
Download
Short summary
This study uses high-resolution remote-sensing data to show that shrinking of the West Antarctic Thwaites Glacier’s ice shelf (floating extension) is exacerbated by several sub-ice-shelf meltwater channels that form as the glacier transitions from full contact with the seafloor to fully floating. In mapping these channels, the position of the transition zone, and thinning rates of the Thwaites Glacier, this work elucidates important processes driving its rapid contribution to sea level rise.