Articles | Volume 18, issue 7
https://doi.org/10.5194/tc-18-3297-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-3297-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The radiative and geometric properties of melting first-year landfast sea ice in the Arctic
Nathan J. M. Laxague
CORRESPONDING AUTHOR
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
Department of Mechanical Engineering, University of New Hampshire, Durham, NH, USA
Center for Ocean Engineering, University of New Hampshire, Durham, NH, USA
Christopher J. Zappa
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
Andrew R. Mahoney
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
John Goodwin
Native Village of Kotzebue, Kotzebue, AK, USA
Cyrus Harris
Native Village of Kotzebue, Kotzebue, AK, USA
Robert E. Schaeffer
Native Village of Kotzebue, Kotzebue, AK, USA
Roswell Schaeffer Sr.
Native Village of Kotzebue, Kotzebue, AK, USA
Sarah Betcher
Farthest North Films, San Francisco, CA, USA
Donna D. W. Hauser
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA
Carson R. Witte
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
Jessica M. Lindsay
School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
Ajit Subramaniam
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
Kate E. Turner
National Institute of Water and Atmospheric Research, Te Whanganui ā Tara / Wellington, Aotearoa / New Zealand
Alex Whiting
Native Village of Kotzebue, Kotzebue, AK, USA
Related authors
Adam Ayouche, Baylor Fox-Kemper, and Nathan J. M. Laxague
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-126, https://doi.org/10.5194/wes-2025-126, 2025
Preprint under review for WES
Short summary
Short summary
We studied how weather affects wind turbines in New England and Florida using weather forecast data. New England shows extreme seasonal changes, with turbines operating above the air mixing layer in summer, while Florida remains stable year-round. Weather forecast models produce large errors, especially during calm nights common in New England. These regional differences and model uncertainties matter when planning wind farms and estimating power across climates.
Adam Ayouche, Baylor Fox-Kemper, and Nathan J. M. Laxague
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-126, https://doi.org/10.5194/wes-2025-126, 2025
Preprint under review for WES
Short summary
Short summary
We studied how weather affects wind turbines in New England and Florida using weather forecast data. New England shows extreme seasonal changes, with turbines operating above the air mixing layer in summer, while Florida remains stable year-round. Weather forecast models produce large errors, especially during calm nights common in New England. These regional differences and model uncertainties matter when planning wind farms and estimating power across climates.
Andrew Harrison Einhorn and Andrew Richard Mahoney
EGUsphere, https://doi.org/10.5194/egusphere-2025-567, https://doi.org/10.5194/egusphere-2025-567, 2025
Short summary
Short summary
Understanding landfast ice stability is crucial for safe on-ice activities. Current data show only its location, not its stability. This research introduces apparent strain, derived from interferometric phase gradients, to measure relative stability. We identify three stability classes—bottomfast, stabilized, and not stabilized—based on the apparent strain. We show that fast ice increases stability throughout the season. These insights enhance safety for on-ice operations in Alaska.
Shenjie Zhou, Pierre Dutrieux, Claudia F. Giulivi, Adrian Jenkins, Alessandro Silvano, Christopher Auckland, E. Povl Abrahamsen, Michael P. Meredith, Irena Vaňková, Keith W. Nicholls, Peter E. D. Davis, Svein Østerhus, Arnold L. Gordon, Christopher J. Zappa, Tiago S. Dotto, Theodore A. Scambos, Kathyrn L. Gunn, Stephen R. Rintoul, Shigeru Aoki, Craig Stevens, Chengyan Liu, Sukyoung Yun, Tae-Wan Kim, Won Sang Lee, Markus Janout, Tore Hattermann, Julius Lauber, Elin Darelius, Anna Wåhlin, Leo Middleton, Pasquale Castagno, Giorgio Budillon, Karen J. Heywood, Jennifer Graham, Stephen Dye, Daisuke Hirano, and Una Kim Miller
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-54, https://doi.org/10.5194/essd-2025-54, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We created the first standardised dataset of in-situ ocean measurements time series from around Antarctica collected since 1970s. This includes temperature, salinity, pressure, and currents recorded by instruments deployed in icy, challenging conditions. Our analysis highlights the dominance of tidal currents and separates these from other patterns to study regional energy distribution. This unique dataset offers a foundation for future research on Antarctic ocean dynamics and ice interactions.
Claudine Hauri, Brita Irving, Sam Dupont, Rémi Pagés, Donna D. W. Hauser, and Seth L. Danielson
Biogeosciences, 21, 1135–1159, https://doi.org/10.5194/bg-21-1135-2024, https://doi.org/10.5194/bg-21-1135-2024, 2024
Short summary
Short summary
Arctic marine ecosystems are highly susceptible to impacts of climate change and ocean acidification. We present pH and pCO2 time series (2016–2020) from the Chukchi Ecosystem Observatory and analyze the drivers of the current conditions to get a better understanding of how climate change and ocean acidification could affect the ecological niches of organisms.
Dyre Oliver Dammann, Mark A. Johnson, Andrew R. Mahoney, and Emily R. Fedders
The Cryosphere, 17, 1609–1622, https://doi.org/10.5194/tc-17-1609-2023, https://doi.org/10.5194/tc-17-1609-2023, 2023
Short summary
Short summary
We investigate the GAMMA Portable Radar Interferometer (GPRI) as a tool for evaluating flexural–gravity waves in sea ice in near real time. With a GPRI mounted on grounded ice near Utqiaġvik, Alaska, we identify 20–50 s infragravity waves in landfast ice with ~1 mm amplitude during 23–24 April 2021. Observed wave speed and periods compare well with modeled wave propagation and on-ice accelerometers, confirming the ability to track propagation and properties of waves over hundreds of meters.
Greg H. Leonard, Kate E. Turner, Maren E. Richter, Maddy S. Whittaker, and Inga J. Smith
The Cryosphere, 15, 4999–5006, https://doi.org/10.5194/tc-15-4999-2021, https://doi.org/10.5194/tc-15-4999-2021, 2021
Short summary
Short summary
McMurdo Sound sea ice can generally be partitioned into two regimes: a stable fast-ice cover forming south of approximately 77.6° S and a more dynamic region north of 77.6° S that is regularly impacted by polynyas. In 2019, a stable fast-ice cover formed unusually late due to repeated break-out events. This subsequently affected sea-ice operations in the 2019/20 field season. We analysed the 2019 sea-ice conditions and found a strong correlation with unusually large southerly wind events.
Cited articles
Barber, D. G. and Yackel, J.: The physical, radiative and microwave scattering characteristics of melt ponds on Arctic landfast sea ice, Int. J. Remote Sens., 20, 2069–2090, https://doi.org/10.1080/014311699212353, 2010. a
Bourassa, M. A., Gille, S. T., Bitz, C., Carlson, D., Cerovecki, I., Clayson, C. A., Cronin, M. F., Drennan, W. M., Fairall, C. W., Hoffman, R. N., Magnusdottir, G., Pinker, R. T., Renfrew, I. A., Serreze, M., Speer, K., Talley, L. D., and Wick, G. A.: High-Latitude Ocean and Sea Ice Surface Fluxes: Challenges for Climate Research, B. Am. Meteorol. Soc., 94, 403–423, https://doi.org/10.1175/BAMS-D-11-00244.1, 2013. a
Bowen, B., Strong, C., and Golden, K. M.: Modeling the fractal geometry of Arctic melt ponds using the level sets of random surfaces, Journal of Fractal Geometry, 5, 121–142, https://doi.org/10.4171/JFG/58, 2018. a, b, c
Bremer, S., Wardekker, A., Dessai, S., Sobolowski, S., Slaattelid, R., and van der Sluijs, J.: Toward a multi-faceted conception of co-production of climate services, Climate Services, 13, 42–50, https://doi.org/10.1016/J.CLISER.2019.01.003, 2019. a
Brennan, M. K., Hakim, G. J., and Blanchard-Wrigglesworth, E.: Arctic Sea-Ice Variability During the Instrumental Era, Geophys. Res. Lett., 47, e2019GL086 843, https://doi.org/10.1029/2019GL086843, 2020. a
Budyko, M. I.: The effect of solar radiation variations on the climate of the Earth, Tellus, 21, 611–619, https://doi.org/10.3402/tellusa.v21i5.10109, 1969. a
Carmack, E., Polyakov, I., Padman, L., Fer, I., Hunke, E., Hutchings, J., Jackson, J., Kelley, D., Kwok, R., Layton, C., Melling, H., Perovich, D. K., Persson, O., Ruddick, B., Timmermans, M.-L., Toole, J., Ross, T., Vavrus, S., and Winsor, P.: Toward Quantifying the Increasing Role of Oceanic Heat in Sea Ice Loss in the New Arctic, B. Am. Meteorol. Soc., 96, 2079–2105, https://doi.org/10.1175/BAMS-D-13-00177.1, 2015. a
Dai, A., Luo, D., Song, M., and Liu, J.: Arctic amplification is caused by sea-ice loss under increasing CO2, Nat. Commun., 10, 121, https://doi.org/10.1038/s41467-018-07954-9, 2019. a
David-Chavez, D. M. and Gavin, M. C.: A global assessment of Indigenous community engagement in climate research, Environ. Res. Lett., 13, 123005, https://doi.org/10.1088/1748-9326/AAF300, 2018. a
Ehn, J. K., Mundy, C. J., Barber, D. G., Hop, H., Rossnagel, A., and Stewart, J.: Impact of horizontal spreading on light propagation in melt pond covered seasonal sea ice in the Canadian Arctic, J. Geophys. Res.-Oceans, 116, C00G02, https://doi.org/10.1029/2010JC006908, 2011. a
Eicken, H.: Indigenous Knowledge and Sea Ice Science: What Can We Learn from Indigenous Ice Users?, SIKU: Knowing Our Ice: Documenting Inuit Sea Ice Knowledge and Use, Springer, Dordrecht, 357–376, https://doi.org/10.1007/978-90-481-8587-0_15, 2010. a
Eicken, H., Danielsen, F., Sam, J.-M., Fidel, M., Johnson, N., Poulsen, M. K., Lee, O. A., Spellman, K. V., Iversen, L., Pulsifer, P., and Enghoff, M.: Connecting Top-Down and Bottom-Up Approaches in Environmental Observing, BioScience, 71, 467–483, https://doi.org/10.1093/BIOSCI/BIAB018, 2021. a
Frey, K. E., Perovich, D. K., and Light, B.: The spatial distribution of solar radiation under a melting Arctic sea ice cover, Geophys. Res. Lett., 38, L22501, https://doi.org/10.1029/2011GL049421, 2011. a
Gearheard, S. F., Leavitt, J. M., Mahoney, A. R., Opie, M., Oshima, T., and Sanguya, J., eds.: The Meaning of Ice: People and Sea Ice in Three Arctic Communities, International Polar Institute Press, ISBN 978-0-9821703-9-7, 2013. a
Grenfell, T. C. and Perovich, D. K.: Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea, J. Geophys. Res.-Oceans, 89, 3573–3580, https://doi.org/10.1029/JC089IC03P03573, 1984. a, b
Grenfell, T. C. and Perovich, D. K.: Seasonal and spatial evolution of albedo in a snow-ice-land-ocean environment, J. Geophys. Res.-Oceans, 109, C01001, https://doi.org/10.1029/2003JC001866, 2004. a
Hauser, D. D., Whiting, A. V., Mahoney, A. R., Goodwin, J., Harris, C., Schaeffer, R. J., Schaeffer Sr, R., Laxague, N. J. M., Subramaniam, A., Witte, C. R., Betcher, S., Lindsay, J. M., and Zappa, C. J.: Co-production of knowledge reveals loss of Indigenous hunting opportunities in the face of accelerating Arctic climate change, Environ. Res. Lett., 16, 095003, https://doi.org/10.1088/1748-9326/AC1A36, 2021. a, b, c
Horvat, C., Flocco, D., Rees Jones, D. W., Roach, L., and Golden, K. M.: The Effect of Melt Pond Geometry on the Distribution of Solar Energy Under First-Year Sea Ice, Geophys. Res. Lett., 47, e2019GL085956, https://doi.org/10.1029/2019GL085956, 2020. a, b, c, d
Huang, W., Lu, P., Lei, R., Xie, H., and Li, Z.: Melt pond distribution and geometry in high Arctic sea ice derived from aerial investigations, Ann. Glaciol., 57, 105–118, https://doi.org/10.1017/AOG.2016.30, 2016. a, b, c
Klenk, N., Fiume, A., Meehan, K., and Gibbes, C.: Local knowledge in climate adaptation research: moving knowledge frameworks from extraction to co-production, WIRES Clim. Change, 8, e475, https://doi.org/10.1002/WCC.475, 2017. a
Klinkenberg, B.: A review of methods used to determine the fractal dimension of linear features, Math. Geol., 26, 23–46, https://doi.org/10.1007/BF02065874, 1994. a
König, M. and Oppelt, N.: A linear model to derive melt pond depth on Arctic sea ice from hyperspectral data, The Cryosphere, 14, 2567–2579, https://doi.org/10.5194/tc-14-2567-2020, 2020. a, b, c
Kwok, R. and Rothrock, D. A.: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008, Geophys. Res. Lett., 36, L15501, https://doi.org/10.1029/2009GL039035, 2009. a
Laxague, N. J. M. and Zappa, C. J.: Codes and Data for “The Radiative and Geometric Properties of Melting First-Year Sea Ice”, v2, Columbia University Libraries [code and data set], https://doi.org/10.7916/tpvb-t433, 2024. a
Light, B., Grenfell, T. C., and Perovich, D. K.: Transmission and absorption of solar radiation by Arctic sea ice during the melt season, J. Geophys. Res.-Oceans, 113, C03023, https://doi.org/10.1029/2006JC003977, 2008. a
Light, B., Perovich, D. K., Webster, M. A., Polashenski, C., and Dadic, R.: Optical properties of melting first-year Arctic sea ice, J. Geophys. Res.-Oceans, 120, 7657–7675, https://doi.org/10.1002/2015JC011163, 2015. a
Lindsay, J. M., Hauser, D. D. W., Mahoney, A. R., Laidre, K. L., Goodwin, J., Harris, C., Schaeffer, R. J., Sr, R. S., Whiting, A. V., Boveng, P. L., Laxague, N. J. M., Betcher, S., Subramaniam, A., Witte, C. R., and Zappa, C. J.: Characteristics of ringed seal Pusa hispida (“natchiq”) denning habitat in Kotzebue Sound, Alaska, during a year of limited sea ice and snow, Mar. Ecol. Prog. Ser., 705, 1–20, https://doi.org/10.3354/meps14252, 2023. a
Lu, P., Leppäranta, M., Cheng, B., and Li, Z.: Influence of melt-pond depth and ice thickness on Arctic sea-ice albedo and light transmittance, Cold Reg. Sci. Technol., 124, 1–10, https://doi.org/10.1016/J.COLDREGIONS.2015.12.010, 2016. a
Mahoney, A. R., Turner, K. E., Hauser, D. D., Laxague, N. J., Lindsay, J. M., Whiting, A. V., Witte, C. R., Goodwin, J., Harris, C., Schaeffer, R. J., Schaeffer, R., Betcher, S., Subramaniam, A., and Zappa, C. J.: Thin ice, deep snow and surface flooding in Kotzebue Sound: landfast ice mass balance during two anomalously warm winters and implications for marine mammals and subsistence hunting, J. Glaciol., 67, 1013–1027, https://doi.org/10.1017/JOG.2021.49, 2021. a, b, c, d
Markus, T., Stroeve, J. C., and Miller, J.: Recent changes in Arctic sea ice melt onset, freezeup, and melt season length, J. Geophys. Res.-Oceans, 114, 12024, https://doi.org/10.1029/2009JC005436, 2009. a
Nicolaus, M., Arndt, S., Katlein, C., Maslanik, J., and Hendricks, S.: Changes in Arctic sea ice result in increasing light transmittance and absorption, Geophys. Res. Lett., 40, 2699–2700, https://doi.org/10.1002/GRL.50523, 2013. a
NOAA: NOAA Solar Calculator, https://gml.noaa.gov/grad/solcalc/, last access: 29 February 2024. a
NOAA NCDC: Local Climatological Data Station Details: KOTZEBUE AIRPORT, AK US, WBAN:26616 | Climate Data Online (CDO) | National Climatic Data Center (NCDC), NOAA NCDC [data set], https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:26616/detail, last access: 5 May 2022. a
Overland, J. E.: Less climatic resilience in the Arctic, Weather and Climate Extremes, 30, 100275, https://doi.org/10.1016/J.WACE.2020.100275, 2020. a
Pawlowicz, R.: M_Map: A mapping package for MATLAB, https://www.eoas.ubc.ca/~rich/map.html (last access: 29 February 2024), 2020. a
Perovich, D. K.: Sea ice and sunlight, in: Sea Ice: Third Edition, 110–137, https://doi.org/10.1002/9781118778371.CH4, 2017. a, b, c
Perovich, D. K. and Polashenski, C.: Albedo evolution of seasonal Arctic sea ice, Geophys. Res. Lett., 39, 8501, https://doi.org/10.1029/2012GL051432, 2012. a
Perovich, D. K., Roesler, C. S., and Pegau, W. S.: Variability in Arctic sea ice optical properties, J. Geophys. Res.-Oceans, 103, 1193–1208, https://doi.org/10.1029/97JC01614, 1998. a
Perovich, D. K., Grenfell, T. C., Light, B., and Hobbs, P. V.: Seasonal evolution of the albedo of multiyear Arctic sea ice, J. Geophys. Res.-Oceans, 107, 8044, https://doi.org/10.1029/2000JC000438, 2002. a, b, c, d
Perovich, D. K., Light, B., and Dickinson, S.: Changing ice and changing light: trends in solar heat input to the upper Arctic ocean from 1988 to 2014, Ann. Glaciol., 61, 401–407, https://doi.org/10.1017/AOG.2020.62, 2020. a
Planck, C. J., Perovich, D. K., and Light, B.: A Synthesis of Observations and Models to Assess the Time Series of Sea Ice Mass Balance in the Beaufort Sea, J. Geophys. Res.- Oceans, 125, e2019JC015833, https://doi.org/10.1029/2019JC015833, 2020. a
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe since 1979, Communications Earth & Environment, 3, 168, https://doi.org/10.1038/s43247-022-00498-3, 2022. a
Screen, J. A. and Simmonds, I.: The central role of diminishing sea ice in recent Arctic temperature amplification, Nature, 464, 1334–1337, https://doi.org/10.1038/nature09051, 2010. a
Skyllingstad, E. D. and Polashenski, C.: Estimated Heat Budget During Summer Melt of Arctic First-Year Sea Ice, Geophys. Res. Lett., 45, 11,789–11,797, https://doi.org/10.1029/2018GL080349, 2018. a
Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Barrett, A.: Changes in Arctic melt season and implications for sea ice loss, Geophys. Res. Lett., 41, 1216–1225, https://doi.org/10.1002/2013GL058951,2014. a
Witte, C. R., Zappa, C. J., Mahoney, A. R., Goodwin, J., Harris, C., Schaeffer, R. J., Schaeffer, R., Betcher, S., Hauser, D. D., Laxague, N. J., Lindsay, J. M., Subramaniam, A., Turner, K. E., and Whiting, A.: The Winter Heat Budget of Sea Ice in Kotzebue Sound: Residual Ocean Heat and the Seasonal Roles of River Outflow, J. Geophys. Res.-Oceans, 126, e2020JC016784, https://doi.org/10.1029/2020JC016784, 2021. a, b
Wright, N. C. and Polashenski, C. M.: Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery, The Cryosphere, 12, 1307–1329, https://doi.org/10.5194/tc-12-1307-2018, 2018. a
Yackel, J. J., Barber, D. G., and Hanesiak, J. M.: Melt ponds on sea ice in the Canadian Archipelago: 1. Variability in morphological and radiative properties, J. Geophys. Res.-Oceans, 105, 22049–22060, https://doi.org/10.1029/2000JC900075, 2000. a, b
Yua, E., Raymond-Yakoubian, J., Daniel, R., and Behe, C.: A framework for co-production of knowledge in the context of Arctic research, Ecol. Soc., 27, 34, https://doi.org/10.5751/ES-12960-270134, 2022. a
Zappa, C. J., Brown, S. M., Laxague, N. J. M., Dhakal, T., Harris, R. A., Farber, A. M., and Subramaniam, A.: Using Ship-Deployed High-Endurance Unmanned Aerial Vehicles for the Study of Ocean Surface and Atmospheric Boundary Layer Processes, Frontiers in Marine Science, 6, 777, https://doi.org/10.3389/fmars.2019.00777, 2020. a, b
Short summary
The state of sea ice strongly affects its absorption of solar energy. In May 2019, we flew uncrewed aerial vehicles (UAVs) equipped with sensors designed to quantify the sunlight that is reflected by sea ice at each wavelength over the sea ice of Kotzebue Sound, Alaska. We found that snow patches get darker (up to ~ 20 %) as they get smaller, while bare patches get darker (up to ~ 20 %) as they get larger. We believe that this difference is due to melting around the edges of small features.
The state of sea ice strongly affects its absorption of solar energy. In May 2019, we flew...