Articles | Volume 18, issue 7
https://doi.org/10.5194/tc-18-3195-2024
https://doi.org/10.5194/tc-18-3195-2024
Research article
 | 
16 Jul 2024
Research article |  | 16 Jul 2024

Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data

Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2309', Silvan Leinss, 16 Jan 2024
  • RC2: 'Comment on egusphere-2023-2309', Anonymous Referee #2, 10 Feb 2024
    • AC1: 'Reply on RC2', Livia Piermattei, 09 Mar 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to revisions (further review by editor and referees) (11 Mar 2024) by Vishnu Nandan
AR by Livia Piermattei on behalf of the Authors (13 Mar 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (14 Mar 2024) by Vishnu Nandan
RR by Silvan Leinss (14 May 2024)
ED: Publish subject to technical corrections (14 May 2024) by Vishnu Nandan
AR by Livia Piermattei on behalf of the Authors (18 May 2024)  Author's response   Manuscript 
Download
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.