Articles | Volume 17, issue 12
https://doi.org/10.5194/tc-17-5299-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-5299-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Co-registration and residual correction of digital elevation models: a comparative study
Tao Li
State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430077, China
College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing 100049, China
Yuanlin Hu
State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430077, China
School of Geography and Information Engineering, China University of Geosciences, Wuhan, Hubei, 430074, China
Bin Liu
State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Liming Jiang
State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430077, China
College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing 100049, China
Hansheng Wang
State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430077, China
Xiang Shen
CORRESPONDING AUTHOR
State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, 430077, China
Related authors
No articles found.
K. Di, Z. Liu, W. Wan, S. Gou, T. Yu, J. Wang, L. Li, C. Liu, B. Liu, M. Peng, Y. Wang, Z. Yue, X. He, and S. Liu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1053–1058, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1053-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1053-2022, 2022
L. Ye, M. Peng, K. Di, B. Liu, and Y. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 1177–1183, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1177-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1177-2020, 2020
J. Wang, J. Li, S. Wang, T. Yu, Z. Rong, X. He, Y. You, Q. Zou, W. Wan, Y. Wang, S. Gou, B. Liu, M. Peng, K. Di, Z. Liu, M. Jia, X. Xin, Y. Chen, X. Cheng, X. Feng, C. Liu, S. Han, and X. Liu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2020, 595–602, https://doi.org/10.5194/isprs-annals-V-3-2020-595-2020, https://doi.org/10.5194/isprs-annals-V-3-2020-595-2020, 2020
K. Di, Z. Liu, B. Liu, W. Wan, M. Peng, J. Li, J. Xie, M. Jia, S. Niu, X. Xin, L. Li, J. Wang, Z. Yue, S. Gou, Y. Wang, R. Wang, J. Liu, Z. Bo, C. Liu, T. Yu, L. Xi, and Y. Miao
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1383–1387, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1383-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1383-2019, 2019
B. Liu, S. Niu, X. Xin, M. Jia, K. Di, Z. Liu, M. Peng, and Z. Yue
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1413–1417, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1413-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1413-2019, 2019
W. Wan, Z. Liu, B. Liu, K. Di, J. Wang, C. Liu, T. Yu, Y. Miao, M. Peng, Y. Wang, and S. Gou
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1457–1461, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1457-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1457-2019, 2019
H. Wang, L. Xiang, H. Steffen, P. Wu, L. Jiang, Q. Shen, D. Piretzidis, M. G. Sideris, M. Hayashi, and L. Jia
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1793–1796, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1793-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1793-2019, 2019
Qiang Shen, Hansheng Wang, C. K. Shum, Liming Jiang, Hou Tse Hsu, Jinglong Dong, Song Mao, and Fan Gao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-149, https://doi.org/10.5194/essd-2018-149, 2018
Revised manuscript not accepted
Short summary
Short summary
Thorough and continued monitoring of ice-sheet dynamics is of utmost importance for accurate predictions of ice-sheet behavior in the future. We present a new Antarctic ice velocity map at a 100-m grid spacing inferred from Landsat 8 imagery data. The datasets will allow for a comprehensive continent-wide investigation of ice dynamics and mass balance with the existing and future ice velocity measurements, provide control and calibration for ice-sheet modelling.
K. Di, M. Jia, X. Xin, B. Liu, Z. Liu, M. Peng, and Z. Yue
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 271–276, https://doi.org/10.5194/isprs-archives-XLII-3-271-2018, https://doi.org/10.5194/isprs-archives-XLII-3-271-2018, 2018
K. Di, B. Liu, M. Peng, X. Xin, M. Jia, W. Zuo, J. Ping, B. Wu, and J. Oberst
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W1, 29–34, https://doi.org/10.5194/isprs-archives-XLII-3-W1-29-2017, https://doi.org/10.5194/isprs-archives-XLII-3-W1-29-2017, 2017
Qiang Shen, Hansheng Wang, Che-Kwan Shum, Liming Jiang, Hou Tse Hsu, and Jinglong Dong
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-34, https://doi.org/10.5194/tc-2017-34, 2017
Preprint withdrawn
Short summary
Short summary
We constructed two present-day continent-wide ice flow maps on Antarctica, and estimated its mass balances over the last decade. An increased mass discharge from Wilkes Land, East Antarctica was found, contrary to the long-standing belief that accelerated mass loss primarily originates from West Antarctica and Antarctic Peninsula. Our maps allow the first continent-wide assessment of mass discharge changes in the last decade, which will contribute to our understanding of Antarctic ice dynamics.
K. Di, B. Xu, B. Liu, M. Jia, and Z. Liu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B4, 369–374, https://doi.org/10.5194/isprs-archives-XLI-B4-369-2016, https://doi.org/10.5194/isprs-archives-XLI-B4-369-2016, 2016
Related subject area
Discipline: Other | Subject: Remote Sensing
Ice thickness and water level estimation for ice-covered lakes with satellite altimetry waveforms and backscattering coefficients
Semi-automated tracking of iceberg B43 using Sentinel-1 SAR images via Google Earth Engine
Mapping potential signs of gas emissions in ice of Lake Neyto, Yamal, Russia, using synthetic aperture radar and multispectral remote sensing data
Brief communication: Glacier run-off estimation using altimetry-derived basin volume change: case study at Humboldt Glacier, northwest Greenland
Recent changes in pan-Antarctic region surface snowmelt detected by AMSR-E and AMSR2
CryoSat Ice Baseline-D validation and evolutions
Theoretical study of ice cover phenology at large freshwater lakes based on SMOS MIRAS data
Xingdong Li, Di Long, Yanhong Cui, Tingxi Liu, Jing Lu, Mohamed A. Hamouda, and Mohamed M. Mohamed
The Cryosphere, 17, 349–369, https://doi.org/10.5194/tc-17-349-2023, https://doi.org/10.5194/tc-17-349-2023, 2023
Short summary
Short summary
This study blends advantages of altimetry backscattering coefficients and waveforms to estimate ice thickness for lakes without in situ data and provides an improved water level estimation for ice-covered lakes by jointly using different threshold retracking methods. Our results show that a logarithmic regression model is more adaptive in converting altimetry backscattering coefficients into ice thickness, and lake surface snow has differential impacts on different threshold retracking methods.
YoungHyun Koo, Hongjie Xie, Stephen F. Ackley, Alberto M. Mestas-Nuñez, Grant J. Macdonald, and Chang-Uk Hyun
The Cryosphere, 15, 4727–4744, https://doi.org/10.5194/tc-15-4727-2021, https://doi.org/10.5194/tc-15-4727-2021, 2021
Short summary
Short summary
This study demonstrates for the first time the potential of Google Earth Engine (GEE) cloud-computing platform and Sentinel-1 synthetic aperture radar (SAR) images for semi-automated tracking of area changes and movements of iceberg B43. Our novel GEE-based iceberg tracking can be used to construct a large iceberg database for a better understanding of the behavior of icebergs and their interactions with surrounding environments.
Georg Pointner, Annett Bartsch, Yury A. Dvornikov, and Alexei V. Kouraev
The Cryosphere, 15, 1907–1929, https://doi.org/10.5194/tc-15-1907-2021, https://doi.org/10.5194/tc-15-1907-2021, 2021
Short summary
Short summary
This study presents strong new indications that regions of anomalously low backscatter in C-band synthetic aperture radar (SAR) imagery of ice of Lake Neyto in northwestern Siberia are related to strong emissions of natural gas. Spatio-temporal dynamics and potential scattering and formation mechanisms are assessed. It is suggested that exploiting the spatial and temporal properties of Sentinel-1 SAR data may be beneficial for the identification of similar phenomena in other Arctic lakes.
Laurence Gray
The Cryosphere, 15, 1005–1014, https://doi.org/10.5194/tc-15-1005-2021, https://doi.org/10.5194/tc-15-1005-2021, 2021
Short summary
Short summary
A total of 9 years of ice velocity and surface height data obtained from a variety of satellites are used to estimate the water run-off from the northern arm of the Humboldt Glacier in NW Greenland. This represents the first direct measurement of water run-off from a large Greenland glacier, and it complements the iceberg calving flux measurements also based on satellite data. This approach should help improve mass loss estimates for some large Greenland glaciers.
Lei Zheng, Chunxia Zhou, Tingjun Zhang, Qi Liang, and Kang Wang
The Cryosphere, 14, 3811–3827, https://doi.org/10.5194/tc-14-3811-2020, https://doi.org/10.5194/tc-14-3811-2020, 2020
Short summary
Short summary
Snowmelt plays a key role in mass and energy balance in polar regions. In this study, we report on the spatial and temporal variations in the surface snowmelt over the Antarctic sea ice and ice sheet (pan-Antarctic region) based on AMSR-E and AMSR2. Melt detection on sea ice is improved by excluding the effect of open water. The decline in surface snowmelt on the Antarctic ice sheet was very likely linked with the enhanced summer Southern Annular Mode.
Marco Meloni, Jerome Bouffard, Tommaso Parrinello, Geoffrey Dawson, Florent Garnier, Veit Helm, Alessandro Di Bella, Stefan Hendricks, Robert Ricker, Erica Webb, Ben Wright, Karina Nielsen, Sanggyun Lee, Marcello Passaro, Michele Scagliola, Sebastian Bjerregaard Simonsen, Louise Sandberg Sørensen, David Brockley, Steven Baker, Sara Fleury, Jonathan Bamber, Luca Maestri, Henriette Skourup, René Forsberg, and Loretta Mizzi
The Cryosphere, 14, 1889–1907, https://doi.org/10.5194/tc-14-1889-2020, https://doi.org/10.5194/tc-14-1889-2020, 2020
Short summary
Short summary
This manuscript aims to describe the evolutions which have been implemented in the new CryoSat Ice processing chain Baseline-D and the validation activities carried out in different domains such as sea ice, land ice and hydrology.
This new CryoSat processing Baseline-D will maximise the uptake and use of CryoSat data by scientific users since it offers improved capability for monitoring the complex and multiscale changes over the cryosphere.
Vasiliy Tikhonov, Ilya Khvostov, Andrey Romanov, and Evgeniy Sharkov
The Cryosphere, 12, 2727–2740, https://doi.org/10.5194/tc-12-2727-2018, https://doi.org/10.5194/tc-12-2727-2018, 2018
Short summary
Short summary
The paper presents a theoretical analysis of seasonal brightness temperature variations at a number of large freshwater lakes retrieved from data of the Soil Moisture and Ocean Salinity satellite. Three distinct seasonal time regions corresponding to different phenological phases of the lake surfaces, complete ice cover, ice melt and deterioration, and open water, were revealed. The paper demonstrates the possibility of determining the beginning of ice cover deterioration from satellite data.
Cited articles
Aguilar, F. J., Aguilar, M. A., Fernandez, I., Negreiros, J. G., Delgado, J., and Perez, J. L.: A New Two-Step Robust Surface Matching Approach for Three-Dimensional Georeferencing of Historical Digital Elevation Models, IEEE Geosci. Remote S., 9, 589–593, https://doi.org/10.1109/LGRS.2011.2175899, 2012.
Akca, D.: Co-registration of Surfaces by 3D Least Squares Matching, Photogramm. Eng. Rem. S., 76, 307–318, https://doi.org/10.14358/PERS.76.3.307, 2010.
Berthier, E., Cabot, V., Vincent, C., and Six, D.: Decadal Region-Wide and Glacier-Wide Mass Balances Derived from Multi-Temporal ASTER Satellite Digital Elevation Models. Validation over the Mont-Blanc Area, Front. Earth Sci., 4, 63, https://doi.org/10.3389/feart.2016.00063, 2016.
Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., and Chevallier, P.: Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India), Remote Sens. Environ., 108, 327–338, https://doi.org/10.1016/j.rse.2006.11.017, 2007.
Besl, P. J. and Mckay, N. D.: A Method for Registration of 3-D Shapes, IEEE T. Pattern Anal., 14, 239–256, https://doi.org/10.1109/34.121791, 1992.
Bolch, T., Pieczonka, T., and Benn, D. I.: Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery, The Cryosphere, 5, 349–358, https://doi.org/10.5194/tc-5-349-2011, 2011.
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016, Nat. Geosci., 10, 668–673, https://doi.org/10.1038/ngeo2999, 2017.
Copernicus: Copernicus DEM – Global and European Digital Elevation Model (COP-DEM), GLO-30, ESA, Copernicus [data set], https://doi.org/10.5270/ESA-c5d3d65, 2023.
Cucchiaro, S., Maset, E., Cavalli, M., Crema, S., Marchi, L., Beinat, A., and Cazorzi, F.: How does co-registration affect geomorphic change estimates in multi-temporal surveys?, GISci. Remote Sens., 57, 611–632, https://doi.org/10.1080/15481603.2020.1763048, 2020.
Di, K., Hu, W., Liu, Y., and Peng, M.: Co-registration of Chang'E-1 stereo images and laser altimeter data with crossover adjustment and image sensor model refinement, Adv. Space Res., 50, 1615–1628, https://doi.org/10.1016/j.asr.2012.06.037, 2012.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Gardelle, J., Berthier, E., and Arnaud, Y.: Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing, J. Glaciol., 58, 419–422, https://doi.org/10.3189/2012JoG11J175, 2012.
Gardelle, J., Berthier, E., Arnaud, Y., and Kääb, A.: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011, The Cryosphere, 7, 1263–1286, https://doi.org/10.5194/tc-7-1263-2013, 2013.
Geyman, E. C., van Pelt, W. J. J., Maloof, A. C., Aas, H. F., and Kohler, J.: Historical glacier change on Svalbard predicts doubling of mass loss by 2100, Nature, 601, 374–379, https://doi.org/10.1038/s41586-021-04314-4, 2022.
Girod, L., Nuth, C., Kääb, A., McNabb, R., and Galland, O.: MMASTER: Improved ASTER DEMs for Elevation Change Monitoring, Remote Sens., 9, 704, https://doi.org/10.3390/rs9070704, 2017.
Gorokhovich, Y. and Voustianiouk, A.: Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics, Remote Sens. Environ., 104, 409–415, https://doi.org/10.1016/j.rse.2006.05.012, 2006.
Gruen, A. and Akca, D.: Least squares 3D surface and curve matching, ISPRS J. Photogramm., 59, 151–174, https://doi.org/10.1016/j.isprsjprs.2005.02.006, 2005.
Hastie, T. and Tibshirani, R.: Generalized additive models, Chapman and Hall, London, https://doi.org/10.1201/9780203753781, 1990.
Hofton, M., Dubayah, R., Blair, J. B., and Rabine, D.: Validation of SRTM elevations over vegetated and non-vegetated terrain using medium footprint lidar, Photogramm. Eng. Rem. S., 72, 279–285, https://doi.org/10.14358/PERS.72.3.279, 2006.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.: Accelerated global glacier mass loss in the early twenty-first century, Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021.
IMBIE: IMBIE-3 Rignot Greenland Drainage Basins, IMBIE [data set], http://imbie.org/imbie-3/drainage-basins/, last access: 6 December 2023.
Jun, C., Ban, Y., and Li, S.: Open access to Earth land-cover map, Nature, 514, 434–434, https://doi.org/10.1038/514434c, 2014.
Karkee, M., Steward, B. L., and Aziz, S. A.: Improving quality of public domain digital elevation models through data fusion, Biosyst. Eng., 101, 293–305, https://doi.org/10.1016/j.biosystemseng.2008.09.010, 2008.
Kim, T. and Jeong, J.: DEM matching for bias compensation of rigorous pushbroom sensor models, ISPRS J. Photogramm., 66, 692–699, https://doi.org/10.1016/j.isprsjprs.2011.06.002, 2011.
Li, C., Jiang, L., Liu, L., and Wang, H.: Regional and Altitude-Dependent Estimate of the SRTM C/X-Band Radar Penetration Difference on High Mountain Asia Glaciers, IEEE J. Sel. Top. Appl., 14, 4244–4253, https://doi.org/10.1109/jstars.2021.3070362, 2021.
Li, H., Deng, Q. L., and Wang, L. C.: Automatic Co-Registration of Digital Elevation Models Based on Centroids of Subwatersheds, IEEE T. Geosci. Remote, 55, 6639–6650, https://doi.org/10.1109/Tgrs.2017.2731048, 2017.
Li, T. and Shen, X.: Co-registration and residual correction of digital elevation models: A comparative study, Zenodo [code], https://doi.org/10.5281/zenodo.8098337, 2023.
Liu, L., Jiang, L., Jiang, H., Wang, H., Ma, N., and Xu, H.: Accelerated glacier mass loss (2011–2016) over the Puruogangri ice field in the inner Tibetan Plateau revealed by bistatic InSAR measurements, Remote Sens. Environ., 231, 111241, https://doi.org/10.1016/j.rse.2019.111241, 2019.
Liu, L., Jiang, L., Zhang, Z., Wang, H., and Ding, X.: Recent Accelerating Glacier Mass Loss of the Geladandong Mountain, Inner Tibetan Plateau, Estimated from ZiYuan-3 and TanDEM-X Measurements, Remote Sens., 12, 472, https://doi.org/10.3390/rs12030472, 2020.
Maurer, J. M., Schaefer, J. M., Rupper, S., and Corley, A.: Acceleration of ice loss across the Himalayas over the past 40 years, Sci. Adv., 5, eaav7266, https://doi.org/10.1126/sciadv.aav7266, 2019.
McMillan, M., Muir, A., Shepherd, A., Escolà, R., Roca, M., Aublanc, J., Thibaut, P., Restano, M., Ambrozio, A., and Benveniste, J.: Sentinel-3 Delay-Doppler altimetry over Antarctica, The Cryosphere, 13, 709–722, https://doi.org/10.5194/tc-13-709-2019, 2019.
NASA, METI, AIST, Japan Spacesystems and U.S./Japan ASTER Science Team: ASTER DEM Product, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/ASTER/AST14DEM.003, 2001.
Nguyen, C. T., Chidthaisong, A., Kieu Diem, P., and Huo, L.-Z.: A Modified Bare Soil Index to Identify Bare Land Features during Agricultural Fallow-Period in Southeast Asia Using Landsat 8, Land, 10, 231, https://doi.org/10.3390/land10030231, 2021.
Noh, M. and Howat, I. M.: Automated Coregistration of Repeat Digital Elevation Models for Surface Elevation Change Measurement Using Geometric Constraints, IEEE T. Geosci. Remote, 52, 2247–2260, https://doi.org/10.1109/TGRS.2013.2258928, 2014.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Pan, H., Zhang, G., Tang, X., Li, D., Zhu, X., Zhou, P., and Jiang, Y.: Basic Products of the ZiYuan-3 Satellite and Accuracy Evaluation, Photogramm. Eng. Rem. S., 79, 1131–1145, https://doi.org/10.14358/PERS.79.12.1131, 2013.
Paul, F., Bolch, T., Kääb, A., Nagler, T., Nuth, C., Scharrer, K., Shepherd, A., Strozzi, T., Ticconi, F., Bhambri, R., Berthier, E., Bevan, S., Gourmelen, N., Heid, T., Jeong, S., Kunz, M., Lauknes, T. R., Luckman, A., Merryman Boncori, J. P., Moholdt, G., Muir, A., Neelmeijer, J., Rankl, M., VanLooy, J., and Van Niel, T.: The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products, Remote Sens. Environ., 162, 408–426, https://doi.org/10.1016/j.rse.2013.07.043, 2015.
Peckham, R. J. and Jordan, G.: Digital Terrain Modelling: Development and Applications in a Policy Support Environment, Springer Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-36731-4, 2007.
Peduzzi, P., Herold, C., and Silverio, W.: Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: the case of Nevado Coropuna (Peru), The Cryosphere, 4, 313–323, https://doi.org/10.5194/tc-4-313-2010, 2010.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B. H., Rich, J., Sharp, M. J., and The Randolph Consortium: The Randolph Glacier Inventory: a globally complete inventory of glaciers, J. Glaciol., 60, 537–552, https://doi.org/10.3189/2014JoG13J176, 2014.
Pieczonka, T., Bolch, T., Wei, J., and Liu, S.: Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery, Remote Sens. Environ., 130, 233–244, https://doi.org/10.1016/j.rse.2012.11.020, 2013.
Rastner, P., Bolch, T., Mölg, N., Machguth, H., Le Bris, R., and Paul, F.: The first complete inventory of the local glaciers and ice caps on Greenland, The Cryosphere, 6, 1483–1495, https://doi.org/10.5194/tc-6-1483-2012, 2012.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier Outlines, Version 6, Boulder, Colorado USA, National Snow and Ice Data Center [data set], https://doi.org/10.7265/4m1f-gd79, 2017.
Rignot, E. and Mouginot, J.: Ice flow in Greenland for the International Polar Year 2008–2009, Geophys. Res. Lett., 39, L11501, https://doi.org/10.1029/2012GL051634, 2012.
Rodriguez, E., Morris, C. S., and Belz, J. E.: A global assessment of the SRTM performance, Photogramm. Eng. Rem. S., 72, 249–260, https://doi.org/10.14358/Pers.72.3.249, 2006.
Rosenholm, D. and Torlegard, K.: Three-dimensional absolute orientation of stereo models using digital elevation models, Photogramm. Eng. Rem. S., 54, 1385–1389, 1988.
Rusinkiewicz, S. and Levoy, M.: Efficient variants of the ICP algorithm, Proceedings third international conference on 3-D digital imaging and modeling, Quebec City, Canada, 28 May–1 June 2001, 145–152, https://doi.org/10.1109/IM.2001.924423, 2001.
Sedaghat, A. and Naeini, A. A.: DEM orientation based on local feature correspondence with global DEMs, GISci. Remote Sens., 55, 110–129, https://doi.org/10.1080/15481603.2017.1364879, 2018.
Trevisani, S. and Rocca, M.: MAD: robust image texture analysis for applications in high resolution geomorphometry, Comput. Geosci., 81, 78–92, https://doi.org/10.1016/j.cageo.2015.04.003, 2015.
United States Geological Survey: USGS EarthExplorer [data set], https://earthexplorer.usgs.gov/, last access: 6 December 2023.
Vacaflor, P., Lenzano, M. G., Vich, A., and Lenzano, L.: Co-Registration Methods and Error Analysis for Four Decades (1979–2018) of Glacier Elevation Changes in the Southern Patagonian Icefield, Remote Sens., 14, 820, https://doi.org/10.3390/rs14040820, 2022.
Van Niel, T. G., McVicar, T. R., Li, L. T., Gallant, J. C., and Yang, Q. K.: The impact of misregistration on SRTM and DEM image differences, Remote Sens. Environ., 112, 2430–2442, https://doi.org/10.1016/j.rse.2007.11.003, 2008.
Wang, M., Zhu, Y., Jin, S. Y., Pan, J., and Zhu, Q. S.: Correction of ZY-3 image distortion caused by satellite jitter via virtual steady reimaging using attitude data, ISPRS J. Photogramm., 119, 108–123, https://doi.org/10.1016/j.isprsjprs.2016.05.012, 2016.
Wood, S. N.: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation, R package “mgcv”, version 1.8-40 [code], https://cran.r-project.org/web/packages/mgcv/index.html (last access: 6 December 2023), 2022.
Wood, S. N.: Generalized Additive Models: An Introduction with R, Second Edition, Texts in Statistical Science, Chapman & Hall/CRC, https://doi.org/10.1201/9781315370279, 2017.
Wu, B., Guo, J., Hu, H., Li, Z. L., and Chen, Y. Q.: Co-registration of lunar topographic models derived from Chang'E-1, SELENE, and LRO laser altimeter data based on a novel surface matching method, Earth Planet. Sc. Lett., 364, 68–84, https://doi.org/10.1016/j.epsl.2012.12.024, 2013.
Ye, Z., Xu, Y. S., Tong, X. H., Zheng, S. Z., Zhang, H., Xie, H., and Stilla, U.: Estimation and analysis of along-track attitude jitter of ZiYuan-3 satellite based on relative residuals of tri-band multispectral imagery, ISPRS J. Photogramm., 158, 188–200, https://doi.org/10.1016/j.isprsjprs.2019.10.012, 2019.
Zhang, T., Cen, M., Ren, Z., Yang, R., Feng, Y., and Zhu, J.: Ability to detect and locate gross errors on DEM matching algorithm, Int. J. Digit. Earth, 3, 72–82, https://doi.org/10.1080/17538940903033175, 2010.
Zhang, T., Lei, B., Wang, J., Li, Y., Liu, K., and Li, T.: Preliminary Quality Analysis of the Triple Linear-Array and Mul Tispectral Images of ZY-3 02 Satellite, in: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 23–27 July 2018, 9172–9175, https://doi.org/10.1109/IGARSS.2018.8518600, 2018.
Short summary
Raw DEMs are often misaligned with each other due to georeferencing errors, and a co-registration process is required before DEM differencing. We present a comparative analysis of the two classical DEM co-registration and three residual correction algorithms. The experimental results show that rotation and scale biases should be considered in DEM co-registration. The new non-parametric regression technique can eliminate the complex systematic errors, which existed in the co-registration results.
Raw DEMs are often misaligned with each other due to georeferencing errors, and a...