Articles | Volume 17, issue 11
Research article
03 Nov 2023
Research article |  | 03 Nov 2023

The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020

Fanyi Zhang, Ruibo Lei, Mengxi Zhai, Xiaoping Pang, and Na Li

Data sets

Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors M. Tschudi, W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik

NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration W. N. Meier, F. Fetterer, A. K. Windnagel, and J. S. Stewart

ERA5 hourly data on single levels from 1940 to present H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J.-N. Thépaut

Short summary
Atmospheric circulation anomalies lead to high Arctic sea ice outflow in winter 2020, causing heavy ice conditions in the Barents–Greenland seas, subsequently impeding the sea surface temperature warming. This suggests that the winter–spring Arctic sea ice outflow can be considered a predictor of changes in sea ice and other marine environmental conditions in the Barents–Greenland seas, which could help to improve our understanding of the physical connections between them.