Articles | Volume 17, issue 7
https://doi.org/10.5194/tc-17-2871-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-2871-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A climatology of thermodynamic vs. dynamic Arctic wintertime sea ice thickness effects during the CryoSat-2 era
Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
Yinghui Liu
Center for Satellite Applications and Research, NOAA/NESDIS, Madison, Wisconsin, USA
Jeffrey R. Key
Center for Satellite Applications and Research, NOAA/NESDIS, Madison, Wisconsin, USA
Related authors
James Anheuser, Yinghui Liu, and Jeffrey R. Key
The Cryosphere, 16, 4403–4421, https://doi.org/10.5194/tc-16-4403-2022, https://doi.org/10.5194/tc-16-4403-2022, 2022
Short summary
Short summary
A prominent part of the polar climate system is sea ice, a better understanding of which would lead to better understanding Earth's climate. Newly published methods for observing the temperature of sea ice have made possible a new method for estimating daily sea ice thickness growth from space using an energy balance. The method compares well with existing sea ice thickness observations.
James Anheuser, Yinghui Liu, and Jeffrey R. Key
The Cryosphere, 16, 4403–4421, https://doi.org/10.5194/tc-16-4403-2022, https://doi.org/10.5194/tc-16-4403-2022, 2022
Short summary
Short summary
A prominent part of the polar climate system is sea ice, a better understanding of which would lead to better understanding Earth's climate. Newly published methods for observing the temperature of sea ice have made possible a new method for estimating daily sea ice thickness growth from space using an energy balance. The method compares well with existing sea ice thickness observations.
Yinghui Liu
Atmos. Chem. Phys., 22, 8151–8173, https://doi.org/10.5194/acp-22-8151-2022, https://doi.org/10.5194/acp-22-8151-2022, 2022
Short summary
Short summary
Cloud detection from state-of-art satellite radar and lidar misses low-level clouds. Using in situ observations, this study confirms this cloud detection limitation over the Arctic Ocean. Impacts of this detection limitation from combined satellite radar and lidar on the monthly mean radiation flux estimations at the surface and at the top of the atmosphere in the Arctic are limited but larger from only satellite radar or satellite lidar in monthly mean and instantaneous values.
Yinghui Liu, Jeffrey R. Key, Xuanji Wang, and Mark Tschudi
The Cryosphere, 14, 1325–1345, https://doi.org/10.5194/tc-14-1325-2020, https://doi.org/10.5194/tc-14-1325-2020, 2020
Short summary
Short summary
This study provides a consistent and accurate multi-decadal product of ice thickness and ice volume from 1984 to 2018 based on satellite-derived ice age. Sea ice volume trends from this dataset are stronger than the trends from other datasets. Changes in sea ice thickness contribute more to overall sea ice volume trends than changes in sea ice area do in all months.
Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Eric Fetzer, Graeme Stephens, Jonathan Jiang, Yulan Hong, Yi-Hui Wang, Jia-Yuh Yu, and Yinghui Liu
The Cryosphere, 13, 969–980, https://doi.org/10.5194/tc-13-969-2019, https://doi.org/10.5194/tc-13-969-2019, 2019
Short summary
Short summary
Observed summer Arctic sea ice retreat has been faster than simulated by the average CMIP5 models, most of which exclude falling ice particles from their radiative calculations.
We use controlled CESM1-CAM5 simulations to show for the first time that snowflakes' radiative effects can accelerate sea ice retreat. September retreat rates are doubled above current CO2 levels, highlighting falling ice radiative effects as a high priority for inclusion in future modelling of the Arctic.
Aaron Letterly, Jeffrey Key, and Yinghui Liu
The Cryosphere, 12, 3373–3382, https://doi.org/10.5194/tc-12-3373-2018, https://doi.org/10.5194/tc-12-3373-2018, 2018
Short summary
Short summary
Significant reductions in Arctic sea ice and snow cover on Arctic land have led to increases in absorbed solar energy by the surface. Does one play a more important role in Arctic climate change? Using 34 years of satellite data we found that solar energy absorption increased by 10 % over the ocean, which was 3 times greater than over land. Therefore, the decreasing sea ice cover, not changes in terrestrial snow cover, has been the dominant feedback mechanism over the last few decades.
Yinghui Liu, Matthew D. Shupe, Zhien Wang, and Gerald Mace
Atmos. Chem. Phys., 17, 5973–5989, https://doi.org/10.5194/acp-17-5973-2017, https://doi.org/10.5194/acp-17-5973-2017, 2017
Short summary
Short summary
Detailed and accurate vertical distributions of cloud properties are essential to accurately calculate the surface radiative flux and to depict the mean climate state, and such information is more desirable in the Arctic due to its recent rapid changes and the challenging observation conditions. This study presents a feasible way to provide such information by blending cloud observations from surface and space-based instruments with the understanding of their respective strength and limitations.
Cited articles
Anheuser, J.: janheuser/thmdyn: 3.0.0 (3.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7987926, 2023. a
Anheuser, J., Liu, Y., and Key, J.: A climatology of thermodynamic vs. dynamic Arctic wintertime sea ice thickness effects during the CryoSat-2 era: Data (3.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7987917, 2023. a
Cavalieri, D. J., Markus, T., and Comiso, J. C.: AMSR-E/Aqua Daily L3 25 km
Brightness Temperature & Sea Ice Concentration Polar Grids, Version 3,
National Snow and Ice Data Center (NSIDC), https://doi.org/10.5067/AMSR-E/AE_SI25.003, 2014. a, b, c, d
DeRepentigny, P., Tremblay, L. B., Newton, R., and Pfirman, S.: Patterns of Sea
Ice Retreat in the Transition to a Seasonally Ice-Free Arctic, J. Climate,
29, 6993–7008, https://doi.org/10.1175/JCLI-D-15-0733.1, 2016. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Feltham, D. L., Untersteiner, N., Wettlaufer, J. S., and Worster, M. G.: Sea
ice is a mushy layer, Geophys. Res. Lett., 33, L14501,
https://doi.org/10.1029/2006gl026290, 2006. a
Guerreiro, K., Fleury, S., Zakharova, E., Kouraev, A., Rémy, F., and Maisongrande, P.: Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: toward an improved Envisat freeboard retrieval, The Cryosphere, 11, 2059–2073, https://doi.org/10.5194/tc-11-2059-2017, 2017. a
Hendricks, S. and Ricker, R.: Product User Guide & Algorithm Specification:
AWI CryoSat-2 Sea Ice Thickness (version 2.3), MEEREIS Portal [data set],
https://doi.org/10013/epic.ecd56b5d-3e7d-4a65-9019-588b1c3b0d26, 2020. a
Hendricks, S., Paul, S., and Rinne, E.: ESA Sea Ice Climate Change Initiative
(Sea_Ice_cci): Northern hemisphere sea ice thickness from the CryoSat-2
satellite on a monthly grid (L3C), v2.0. Centre for Environmental Data
Analysis, Centre for Environmental Data Analysis (CEDA), https://doi.org/10.5285/ff79d140824f42dd92b204b4f1e9e7c2, 2018. a
Hibler, W. D.: MODELING A VARIABLE THICKNESS SEA ICE COVER, Mon. Weather
Rev., 108, 1943–1973,
https://doi.org/10.1175/1520-0493(1980)108<1943:mavtsi>2.0.co;2, 1980. a
Hoffman, J. P., Ackerman, S. A., Liu, Y. H., and Key, J. R.: The Detection and
Characterization of Arctic Sea Ice Leads with Satellite Imagers, Remote
Sensing, 11, 521, https://doi.org/10.3390/rs11050521, 2019. a
Holland, P. R. and Kimura, N.: Observed Concentration Budgets of Arctic and
Antarctic Sea Ice, J. Climate, 29, 5241–5249,
https://doi.org/10.1175/jcli-d-16-0121.1, 2016. a, b, c
Itkin, P., Spreen, G., Hvidegaard, S. M., Skourup, H., Wilkinson, J., Gerland,
S., and Granskog, M. A.: Contribution of Deformation to Sea Ice Mass Balance:
A Case Study From an N-ICE2015 Storm, Geophys. Res. Lett., 45,
789–796, https://doi.org/10.1002/2017gl076056, 2018. a
Kaleschke, L., Hendricks, S., Tian-Kunze, X., and Ricker, R.: CryoSat-SMOS Merged Sea Ice Thickness, MEEREIS Portal [data set], https://spaces.awi.de/display/CS2SMOS/CryoSat-SMOS+Merged+Sea+Ice+Thickness (last access: 17 May 2022), 2019. a
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G.,
Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M.,
Kushner, P., Lamarque, J. F., Lawrence, D., Lindsay, K., Middleton, A.,
Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: THE
Community Earth System Model (CESM) LARGE
ENSEMBLE PROJECT: A Community Resource for Studying Climate
Change in the Presence of Internal Climate Variability, B.
Am. Meteorol. Soc., 96, 1333–1349,
https://doi.org/10.1175/bams-d-13-00255.1, 2015. a
Keen, A., Blockley, E., Bailey, D. A., Boldingh Debernard, J., Bushuk, M., Delhaye, S., Docquier, D., Feltham, D., Massonnet, F., O'Farrell, S., Ponsoni, L., Rodriguez, J. M., Schroeder, D., Swart, N., Toyoda, T., Tsujino, H., Vancoppenolle, M., and Wyser, K.: An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models, The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, 2021. a, b, c, d, e
Kilic, L., Tonboe, R. T., Prigent, C., and Heygster, G.: Estimating the snow depth, the snow–ice interface temperature, and the effective temperature of Arctic sea ice using Advanced Microwave Scanning Radiometer 2 and ice mass balance buoy data, The Cryosphere, 13, 1283–1296, https://doi.org/10.5194/tc-13-1283-2019, 2019. a, b
Koo, Y., Lei, R. B., Cheng, Y. B., Cheng, B., Xie, H. J., Hoppmann, M., Kurtz,
N. T., Ackley, S. F., and Mestas-Nunez, A. M.: Estimation of thermodynamic
and dynamic contributions to sea ice growth in the Central Arctic using
ICESat-2 and MOSAiC SIMBA buoy data, Remote Sens. Environ., 267, 112730,
https://doi.org/10.1016/j.rse.2021.112730, 2021. a, b, c, d, e, f, g, h, i, j
Kurtz, N. T., Galin, N., and Studinger, M.: An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting, The Cryosphere, 8, 1217–1237, https://doi.org/10.5194/tc-8-1217-2014, 2014. a
Kwok, R.: Contrasts in sea ice deformation and production in the Arctic
seasonal and perennial ice zones, J. Geophys. Res.-Oceans,
111, C11S22, https://doi.org/10.1029/2005jc003246, 2006. a, b, c
Kwok, R. and Cunningham, G. F.: Variability of Arctic sea ice thickness and
volume from CryoSat-2, Philos. T. Roy. Soc. A, 373, 2045,
https://doi.org/10.1098/rsta.2014.0157, 2015. a
Kwok, R. and Cunningham, G. F.: Contributions of growth and deformation to
monthly variability in sea ice thickness north of the coasts of Greenland and
the Canadian Arctic Archipelago, Geophys. Res. Lett., 43,
8097–8105, https://doi.org/10.1002/2016gl069333, 2016. a, b
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen,
R., Kwok, R., Schweiger, A., Zhang, J. L., Haas, C., Hendricks, S.,
Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates
of Arctic sea ice thickness and volume, Geophys. Res. Lett., 40, 732–737,
https://doi.org/10.1002/grl.50193, 2013. a, b, c, d
Lepparanta, M.: A Review of Analytical Models of Sea–Ice Growth, Atmos. Ocean,
31, 123–138, https://doi.org/10.1080/07055900.1993.9649465, 1993. a
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B.,
Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R.,
Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R.,
Neuenschwander, A., Palm, S., Popescu, S., Shum, C. K., Schutz, B. E., Smith,
B., Yang, Y. K., and Zwally, J.: The Ice, Cloud, and land Elevation
Satellite-2 (ICESat-2): Science requirements, concept, and implementation,
Remote Sens. Environ., 190, 260–273, https://doi.org/10.1016/j.rse.2016.12.029, 2017. a
Markus, T., Comiso, J. C., and Meier, W. N.: AMSR-E/AMSR2 Unified L3 Daily 25
km Brightness Temperatures & Sea Ice Concentration Polar Grids, Version 1,
National Snow and Ice Data Center (NSIDC), https://doi.org/10.5067/TRUIAL3WPAUP, 2018. a, b, c, d
Mecklenburg, S., Drusch, M., Kerr, Y. H., Font, J., Martin-Neira, M., Delwart,
S., Buenadicha, G., Reul, N., Daganzo-Eusebio, E., Oliva, R., and
Crapolicchio, R.: ESA's Soil Moisture and Ocean Salinity Mission: Mission
Performance and Operations, IEEE T. Geosci. Remote., 50, 1354–1366,
https://doi.org/10.1109/tgrs.2012.2187666, 2012. a
Nicolaus, M., Riemann-Campe, K., Bliss, A., Hutchings, J. K., Granskog, M. A., Haas, C., Hoppmann, M., Kanzow, T., Krishfield, R. A., Lei, R., Rex, M., Li, T., and Rabe, B.: Drift trajectory of the site M1 of the Distributed Network of MOSAiC 2019/2020. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.937193, 2021. a
Nicolaus, M., Perovich, D. K., Spreen, G., Granskog, M. A., von Albedyll, L.,
Angelopoulos, M., Anhaus, P., Arndt, S., Belter, H. J., Bessonov, V.,
Birnbaum, G., Brauchle, J., Calmer, R., Cardellach, E., Cheng, B.,
Clemens-Sewall, D., Dadic, R., Damm, E., de Boer, G., Demir, O., Dethloff,
K., Divine, D. V., Fong, A. A., Fons, S., Frey, M. M., Fuchs, N., Gabarró,
C., Gerland, S., Goessling, H. F., Gradinger, R., Haapala, J., Haas, C.,
Hamilton, J., Hannula, H.-R., Hendricks, S., Herber, A., Heuzé, C.,
Hoppmann, M., Høyland, K. V., Huntemann, M., Hutchings, J. K., Hwang, B.,
Itkin, P., Jacobi, H.-W., Jaggi, M., Jutila, A., Kaleschke, L., Katlein, C.,
Kolabutin, N., Krampe, D., Kristensen, S. S., Krumpen, T., Kurtz, N.,
Lampert, A., Lange, B. A., Lei, R., Light, B., Linhardt, F., Liston, G. E.,
Loose, B., Macfarlane, A. R., Mahmud, M., Matero, I. O., Maus, S.,
Morgenstern, A., Naderpour, R., Nandan, V., Niubom, A., Oggier, M., Oppelt,
N., Pätzold, F., Perron, C., Petrovsky, T., Pirazzini, R., Polashenski, C.,
Rabe, B., Raphael, I. A., Regnery, J., Rex, M., Ricker, R., Riemann-Campe,
K., Rinke, A., Rohde, J., Salganik, E., Scharien, R. K., Schiller, M.,
Schneebeli, M., Semmling, M., Shimanchuk, E., Shupe, M. D., Smith, M. M.,
Smolyanitsky, V., Sokolov, V., Stanton, T., Stroeve, J., Thielke, L.,
Timofeeva, A., Tonboe, R. T., Tavri, A., Tsamados, M., Wagner, D. N.,
Watkins, D., Webster, M., and Wendisch, M.: Overview of the MOSAiC
expedition: Snow and sea ice, Elementa: Science of the Anthropocene, 10,
000046, https://doi.org/10.1525/elementa.2021.000046, 2022. a, b
Petty, A. A., Holland, M. M., Bailey, D. A., and Kurtz, N. T.: Warm Arctic,
Increased Winter Sea Ice Growth?, Geophys. Res. Lett., 45,
12922–12930, https://doi.org/10.1029/2018gl079223, 2018. a
Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M.: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation, The Cryosphere, 8, 1607–1622, https://doi.org/10.5194/tc-8-1607-2014, 2014. a, b
Ricker, R., Hendricks, S., Kaleschke, L., and Tian-Kunze, X.: CS2SMOS User
Guide v3.0, MEEREIS Portal [data set], https://doi.org/10013/epic.51136, 2017a. a
Stefan, J.: Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung
im Polarmeere, Ann. Phys.-Berlin, 278, 269–286,
https://doi.org/10.1002/andp.18912780206, 1891. a
Taylor, J. R.: An introduction to error analysis: The study of uncertainties in
physical measurements, University Science Books, 20 Edgehill Rd., Mill
Valley, CA 94941, ISBN 0-935702-10-5, 1982. a
Thorndike, A. S., Rothrock, D. A., Maykut, G. A., and Colony, R.: Thickness
Distribution of Sea Ice, J. Geophys. Res.-Oc. Atm., 80, 4501–4513,
https://doi.org/10.1029/JC080i033p04501, 1975. a
Tian-Kunze, X., Kaleschke, L., Maaß, N., Mäkynen, M., Serra, N., Drusch, M., and Krumpen, T.: SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification, The Cryosphere, 8, 997–1018, https://doi.org/10.5194/tc-8-997-2014, 2014. a
Tilling, R. L., Ridout, A., and Shepherd, A.: Estimating Arctic sea ice
thickness and volume using CryoSat-2 radar altimeter data, Adv. Space Res.,
62, 1203–1225, https://doi.org/10.1016/j.asr.2017.10.051, 2018. a
Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C., and Maslanik, J.: Polar
Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4,
National Snow and Ice Data Center (NSIDC), https://doi.org/10.5067/INAWUWO7QH7B, 2019. a, b
Tschudi, M. A., Meier, W. N., and Stewart, J. S.: An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC), The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020, 2020.
a, b, c
von Albedyll, L., Haas, C., and Dierking, W.: Linking sea ice deformation to ice thickness redistribution using high-resolution satellite and airborne observations, The Cryosphere, 15, 2167–2186, https://doi.org/10.5194/tc-15-2167-2021, 2021. a
von Albedyll, L., Hendricks, S., Grodofzig, R., Krumpen, T., Arndt, S., Belter,
H. J., Birnbaum, G., Cheng, B., Hoppmann, M., Hutchings, J., Itkin, P., Lei,
R. B., Nicolaus, M., Ricker, R., Rohde, J., Suhrhoff, M., Timofeeva, A.,
Watkins, D., Webster, M., and Haas, C.: Thermodynamic and dynamic
contributions to seasonal Arctic sea ice thickness distributions from
airborne observations, Elementa-Science of the Anthropocene, 10,
00074, https://doi.org/10.1525/elementa.2021.00074, 2022. a, b, c, d, e, f, g, h
Willmes, S. and Heinemann, G.: Sea-Ice Wintertime Lead Frequencies and Regional
Characteristics in the Arctic, 2003–2015, Remote Sensing, 8, 4,
https://doi.org/10.3390/rs8010004, 2016. a
Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D., Cullen,
R., de Chateau-Thierry, P., Laxon, S. W., Mallow, U., Mavrocordatos, C.,
Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., and Wallis, D. W.:
CryoSat: A mission to determine the fluctuations in Earth's land and marine
ice fields, Adv. Space Res.,
37, 841–871, https://doi.org/10.1016/j.asr.2005.07.027, 2006. a, b
Zhang, J. L. and Rothrock, D.: A thickness and enthalpy distribution sea-ice
model, J. Phys. Oceanogr., 31, 2986–3001,
https://doi.org/10.1175/1520-0485(2001)031<2986:ataeds>2.0.co;2, 2001. a
Short summary
Sea ice parcels may experience thickness changes primarily through two processes: due to freezing or melting or due to motion relative to other parcels. These processes are independent and will be affected differently in a changing climate. In order to better understand these processes and compare them against models, observational estimates of these process independent from one another are necessary. We present a large spatial- and temporal-scale observational estimate of these processes.
Sea ice parcels may experience thickness changes primarily through two processes: due to...