Articles | Volume 16, issue 3
https://doi.org/10.5194/tc-16-779-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-779-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Regional variability of diatoms in ice cores from the Antarctic Peninsula and Ellsworth Land, Antarctica
British Antarctic Survey, Ice Dynamics and Paleoclimate, Cambridge,
CB3 0ET, UK
Department of Earth Sciences, University of Cambridge, Cambridge, CB2
3EQ, UK
Claire S. Allen
British Antarctic Survey, Ice Dynamics and Paleoclimate, Cambridge,
CB3 0ET, UK
Elizabeth R. Thomas
British Antarctic Survey, Ice Dynamics and Paleoclimate, Cambridge,
CB3 0ET, UK
Related authors
Serena Lagorio, Barbara Delmonte, Dieter Tetzner, Elisa Malinverno, Giovanni Baccolo, Barbara Stenni, Massimo Frezzotti, Valter Maggi, and Nancy Bertler
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-56, https://doi.org/10.5194/cp-2024-56, 2024
Preprint under review for CP
Short summary
Short summary
Aeolian diatoms and dust in the RICE ice core (Antarctica) allow reconstructing climate variability in the Eastern Ross Sea over the last 2 ka. Long-term changes are related to environmental parameters as sea ice extent and extension of the Ross Sea Polynya. A climatic reorganization occurred around 1470 CE in response to the development of the Roosevelt Island Polynya. El Niño promoted the establishment of the Ross Sea dipole while La Niña favored the eastward expansion of the polynya.
Isobel Rowell, Carlos Martin, Robert Mulvaney, Helena Pryer, Dieter Tetzner, Emily Doyle, Hara Madhav Talasila, Jilu Li, and Eric Wolff
Clim. Past, 19, 1699–1714, https://doi.org/10.5194/cp-19-1699-2023, https://doi.org/10.5194/cp-19-1699-2023, 2023
Short summary
Short summary
We present an age scale for a new type of ice core from a vulnerable region in West Antarctic, which is lacking in longer-term (greater than a few centuries) ice core records. The Sherman Island core extends to greater than 1 kyr. We provide modelling evidence for the potential of a 10 kyr long core. We show that this new type of ice core can be robustly dated and that climate records from this core will be a significant addition to existing regional climate records.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Elizabeth Ruth Thomas, Dieter Tetzner, Bradley Markle, Joel Pedro, Guisella Gacitúa, Dorothea Elisabeth Moser, and Sarah Jackson
EGUsphere, https://doi.org/10.5194/egusphere-2023-1064, https://doi.org/10.5194/egusphere-2023-1064, 2023
Short summary
Short summary
The chemical records contained in a 12 m firn (ice) core from Peter 1st Island, a remote Sub-Antarctic Island situated in the Pacific sector of the Southern Ocean (the Bellingshausen Sea), captures changes in snowfall and temperature (2002–2017 C.E.). This data sparse region has experienced dramatic climate change in recent decades, including sea ice decline and ice loss from adjacent West Antarctic glaciers.
Dieter R. Tetzner, Elizabeth R. Thomas, Claire S. Allen, and Mackenzie M. Grieman
Clim. Past, 18, 1709–1727, https://doi.org/10.5194/cp-18-1709-2022, https://doi.org/10.5194/cp-18-1709-2022, 2022
Short summary
Short summary
Changes in the Southern Hemisphere westerly winds are drivers of recent environmental changes in West Antarctica. However, our understanding of this relationship is limited by short and sparse observational records. Here we present the first regional wind study based on the novel use of diatoms preserved in Antarctic ice cores. Our results demonstrate that diatom abundance is the optimal record for reconstructing wind strength variability over the Southern Hemisphere westerly wind belt.
Kirstin Hoffmann, Francisco Fernandoy, Hanno Meyer, Elizabeth R. Thomas, Marcelo Aliaga, Dieter Tetzner, Johannes Freitag, Thomas Opel, Jorge Arigony-Neto, Christian Florian Göbel, Ricardo Jaña, Delia Rodríguez Oroz, Rebecca Tuckwell, Emily Ludlow, Joseph R. McConnell, and Christoph Schneider
The Cryosphere, 14, 881–904, https://doi.org/10.5194/tc-14-881-2020, https://doi.org/10.5194/tc-14-881-2020, 2020
Serena Lagorio, Barbara Delmonte, Dieter Tetzner, Elisa Malinverno, Giovanni Baccolo, Barbara Stenni, Massimo Frezzotti, Valter Maggi, and Nancy Bertler
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-56, https://doi.org/10.5194/cp-2024-56, 2024
Preprint under review for CP
Short summary
Short summary
Aeolian diatoms and dust in the RICE ice core (Antarctica) allow reconstructing climate variability in the Eastern Ross Sea over the last 2 ka. Long-term changes are related to environmental parameters as sea ice extent and extension of the Ross Sea Polynya. A climatic reorganization occurred around 1470 CE in response to the development of the Roosevelt Island Polynya. El Niño promoted the establishment of the Ross Sea dipole while La Niña favored the eastward expansion of the polynya.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Dorothea Elisabeth Moser, Elizabeth R. Thomas, Christoph Nehrbass-Ahles, Anja Eichler, and Eric Wolff
The Cryosphere, 18, 2691–2718, https://doi.org/10.5194/tc-18-2691-2024, https://doi.org/10.5194/tc-18-2691-2024, 2024
Short summary
Short summary
Increasing temperatures worldwide lead to more melting of glaciers and ice caps, even in the polar regions. This is why ice-core scientists need to prepare to analyse records affected by melting and refreezing. In this paper, we present a summary of how near-surface melt forms, what structural imprints it leaves in snow, how various signatures used for ice-core climate reconstruction are altered, and how we can still extract valuable insights from melt-affected ice cores.
Isobel Rowell, Carlos Martin, Robert Mulvaney, Helena Pryer, Dieter Tetzner, Emily Doyle, Hara Madhav Talasila, Jilu Li, and Eric Wolff
Clim. Past, 19, 1699–1714, https://doi.org/10.5194/cp-19-1699-2023, https://doi.org/10.5194/cp-19-1699-2023, 2023
Short summary
Short summary
We present an age scale for a new type of ice core from a vulnerable region in West Antarctic, which is lacking in longer-term (greater than a few centuries) ice core records. The Sherman Island core extends to greater than 1 kyr. We provide modelling evidence for the potential of a 10 kyr long core. We show that this new type of ice core can be robustly dated and that climate records from this core will be a significant addition to existing regional climate records.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Elizabeth Ruth Thomas, Dieter Tetzner, Bradley Markle, Joel Pedro, Guisella Gacitúa, Dorothea Elisabeth Moser, and Sarah Jackson
EGUsphere, https://doi.org/10.5194/egusphere-2023-1064, https://doi.org/10.5194/egusphere-2023-1064, 2023
Short summary
Short summary
The chemical records contained in a 12 m firn (ice) core from Peter 1st Island, a remote Sub-Antarctic Island situated in the Pacific sector of the Southern Ocean (the Bellingshausen Sea), captures changes in snowfall and temperature (2002–2017 C.E.). This data sparse region has experienced dramatic climate change in recent decades, including sea ice decline and ice loss from adjacent West Antarctic glaciers.
Yetang Wang, Xueying Zhang, Wentao Ning, Matthew A. Lazzara, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Paolo Grigioni, Petra Heil, Elizabeth R. Thomas, David Mikolajczyk, Lee J. Welhouse, Linda M. Keller, Zhaosheng Zhai, Yuqi Sun, and Shugui Hou
Earth Syst. Sci. Data, 15, 411–429, https://doi.org/10.5194/essd-15-411-2023, https://doi.org/10.5194/essd-15-411-2023, 2023
Short summary
Short summary
Here we construct a new database of Antarctic automatic weather station (AWS) meteorological records, which is quality-controlled by restrictive criteria. This dataset compiled all available Antarctic AWS observations, and its resolutions are 3-hourly, daily and monthly, which is very useful for quantifying spatiotemporal variability in weather conditions. Furthermore, this compilation will be used to estimate the performance of the regional climate models or meteorological reanalysis products.
Helene M. Hoffmann, Mackenzie M. Grieman, Amy C. F. King, Jenna A. Epifanio, Kaden Martin, Diana Vladimirova, Helena V. Pryer, Emily Doyle, Axel Schmidt, Jack D. Humby, Isobel F. Rowell, Christoph Nehrbass-Ahles, Elizabeth R. Thomas, Robert Mulvaney, and Eric W. Wolff
Clim. Past, 18, 1831–1847, https://doi.org/10.5194/cp-18-1831-2022, https://doi.org/10.5194/cp-18-1831-2022, 2022
Short summary
Short summary
The WACSWAIN project (WArm Climate Stability of the West Antarctic ice sheet in the last INterglacial) investigates the fate of the West Antarctic Ice Sheet during the last warm period on Earth (115 000–130 000 years before present). Within this framework an ice core was recently drilled at Skytrain Ice Rise. In this study we present a stratigraphic chronology of that ice core based on absolute age markers and annual layer counting for the last 2000 years.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Dieter R. Tetzner, Elizabeth R. Thomas, Claire S. Allen, and Mackenzie M. Grieman
Clim. Past, 18, 1709–1727, https://doi.org/10.5194/cp-18-1709-2022, https://doi.org/10.5194/cp-18-1709-2022, 2022
Short summary
Short summary
Changes in the Southern Hemisphere westerly winds are drivers of recent environmental changes in West Antarctica. However, our understanding of this relationship is limited by short and sparse observational records. Here we present the first regional wind study based on the novel use of diatoms preserved in Antarctic ice cores. Our results demonstrate that diatom abundance is the optimal record for reconstructing wind strength variability over the Southern Hemisphere westerly wind belt.
Joanne S. Johnson, Ryan A. Venturelli, Greg Balco, Claire S. Allen, Scott Braddock, Seth Campbell, Brent M. Goehring, Brenda L. Hall, Peter D. Neff, Keir A. Nichols, Dylan H. Rood, Elizabeth R. Thomas, and John Woodward
The Cryosphere, 16, 1543–1562, https://doi.org/10.5194/tc-16-1543-2022, https://doi.org/10.5194/tc-16-1543-2022, 2022
Short summary
Short summary
Recent studies have suggested that some portions of the Antarctic Ice Sheet were less extensive than present in the last few thousand years. We discuss how past ice loss and regrowth during this time would leave its mark on geological and glaciological records and suggest ways in which future studies could detect such changes. Determining timing of ice loss and gain around Antarctica and conditions under which they occurred is critical for preparing for future climate-warming-induced changes.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Matthew Chadwick, Claire S. Allen, Louise C. Sime, Xavier Crosta, and Claus-Dieter Hillenbrand
Clim. Past, 18, 129–146, https://doi.org/10.5194/cp-18-129-2022, https://doi.org/10.5194/cp-18-129-2022, 2022
Short summary
Short summary
Algae preserved in marine sediments have allowed us to reconstruct how much winter sea ice was present around Antarctica during a past time period (130 000 years ago) when the climate was warmer than today. The patterns of sea-ice increase and decrease vary between different parts of the Southern Ocean. The Pacific sector has a largely stable sea-ice extent, whereas the amount of sea ice in the Atlantic sector is much more variable with bigger decreases and increases than other regions.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Elizabeth Ruth Thomas, Guisella Gacitúa, Joel B. Pedro, Amy Constance Faith King, Bradley Markle, Mariusz Potocki, and Dorothea Elisabeth Moser
The Cryosphere, 15, 1173–1186, https://doi.org/10.5194/tc-15-1173-2021, https://doi.org/10.5194/tc-15-1173-2021, 2021
Short summary
Short summary
Here we present the first-ever radar and ice core data from the sub-Antarctic islands of Bouvet Island, Peter I Island, and Young Island. These islands have the potential to record past climate in one of the most data-sparse regions on earth. Despite their northerly location, surface melting is generally low, and the upper layer of the ice at most sites is undisturbed. We estimate that a 100 m ice core drilled on these islands could capture climate over the past 100–200 years.
Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T. M. Lenaerts, and Elizabeth R. Thomas
The Cryosphere, 14, 4083–4102, https://doi.org/10.5194/tc-14-4083-2020, https://doi.org/10.5194/tc-14-4083-2020, 2020
Short summary
Short summary
Surface mass balance (SMB) and surface air temperature (SAT) are correlated at the regional scale for most of Antarctica, SMB and δ18O. Areas with low/no correlation are where wind processes (foehn, katabatic wind warming, and erosion) are sufficiently active to overwhelm the synoptic-scale snow accumulation. Measured in ice cores, the link between SMB, SAT, and δ18O is much weaker. Random noise can be removed by core record averaging but local processes perturb the correlation systematically.
Quentin Dalaiden, Hugues Goosse, François Klein, Jan T. M. Lenaerts, Max Holloway, Louise Sime, and Elizabeth R. Thomas
The Cryosphere, 14, 1187–1207, https://doi.org/10.5194/tc-14-1187-2020, https://doi.org/10.5194/tc-14-1187-2020, 2020
Short summary
Short summary
Large uncertainties remain in Antarctic surface temperature reconstructions over the last millennium. Here, the analysis of climate model outputs reveals that snow accumulation is a more relevant proxy for surface temperature reconstructions than δ18O. We use this finding in data assimilation experiments to compare to observed surface temperatures. We show that our continental temperature reconstruction outperforms reconstructions based on δ18O, especially for East Antarctica.
Kirstin Hoffmann, Francisco Fernandoy, Hanno Meyer, Elizabeth R. Thomas, Marcelo Aliaga, Dieter Tetzner, Johannes Freitag, Thomas Opel, Jorge Arigony-Neto, Christian Florian Göbel, Ricardo Jaña, Delia Rodríguez Oroz, Rebecca Tuckwell, Emily Ludlow, Joseph R. McConnell, and Christoph Schneider
The Cryosphere, 14, 881–904, https://doi.org/10.5194/tc-14-881-2020, https://doi.org/10.5194/tc-14-881-2020, 2020
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Christoph F. Schaller, Rebecca J. Tuckwell, Henning Löwe, Laurent Arnaud, Olivier Magand, Elizabeth R. Thomas, Johannes Freitag, Robert Mulvaney, Martin Schneebeli, and Vladimir Ya. Lipenkov
The Cryosphere, 13, 3383–3403, https://doi.org/10.5194/tc-13-3383-2019, https://doi.org/10.5194/tc-13-3383-2019, 2019
Short summary
Short summary
Understanding gas trapping in polar ice is essential to study the relationship between greenhouse gases and past climates. New data of bubble closure, used in a simple gas-trapping model, show inconsistency with the final air content in ice. This suggests gas trapping is not fully understood. We also use a combination of high-resolution measurements to investigate the effect of polar snow stratification on gas trapping and find that all strata have similar pores, but that some close in advance.
Dominic A. Hodgson, Kelly Hogan, James M. Smith, James A. Smith, Claus-Dieter Hillenbrand, Alastair G. C. Graham, Peter Fretwell, Claire Allen, Vicky Peck, Jan-Erik Arndt, Boris Dorschel, Christian Hübscher, Andrew M. Smith, and Robert Larter
The Cryosphere, 12, 2383–2399, https://doi.org/10.5194/tc-12-2383-2018, https://doi.org/10.5194/tc-12-2383-2018, 2018
Short summary
Short summary
We studied the Coats Land ice margin, Antarctica, providing a multi-disciplinary geophysical assessment of the ice sheet configuration through its last advance and retreat; a description of the physical constraints on the stability of the past and present ice and future margin based on its submarine geomorphology and ice-sheet geometry; and evidence that once detached from the bed, the ice shelves in this region were predisposed to rapid retreat back to coastal grounding lines.
Rowan Dejardin, Sev Kender, Claire S. Allen, Melanie J. Leng, George E. A. Swann, and Victoria L. Peck
J. Micropalaeontol., 37, 25–71, https://doi.org/10.5194/jm-37-25-2018, https://doi.org/10.5194/jm-37-25-2018, 2018
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Elizabeth R. Thomas, J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, Brooke Medley, Jan Lenaerts, Nancy Bertler, Michiel R. van den Broeke, Daniel A. Dixon, Massimo Frezzotti, Barbara Stenni, Mark Curran, and Alexey A. Ekaykin
Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, https://doi.org/10.5194/cp-13-1491-2017, 2017
Short summary
Short summary
Regional Antarctic snow accumulation derived from 79 ice core records is evaluated as part of the PAGES Antarctica 2k working group. Our results show that surface mass balance for the total Antarctic ice sheet has increased at a rate of 7 ± 0.13 Gt dec-1 since 1800 AD, representing a net reduction in sea level of ~ 0.02 mm dec-1 since 1800 and ~ 0.04 mm dec-1 since 1900 AD. The largest contribution is from the Antarctic Peninsula.
Chris S. M. Turney, Christopher J. Fogwill, Jonathan G. Palmer, Erik van Sebille, Zoë Thomas, Matt McGlone, Sarah Richardson, Janet M. Wilmshurst, Pavla Fenwick, Violette Zunz, Hugues Goosse, Kerry-Jayne Wilson, Lionel Carter, Mathew Lipson, Richard T. Jones, Melanie Harsch, Graeme Clark, Ezequiel Marzinelli, Tracey Rogers, Eleanor Rainsley, Laura Ciasto, Stephanie Waterman, Elizabeth R. Thomas, and Martin Visbeck
Clim. Past, 13, 231–248, https://doi.org/10.5194/cp-13-231-2017, https://doi.org/10.5194/cp-13-231-2017, 2017
Short summary
Short summary
The Southern Ocean plays a fundamental role in global climate but suffers from a dearth of observational data. As the Australasian Antarctic Expedition 2013–2014 we have developed the first annually resolved temperature record using trees from subantarctic southwest Pacific (52–54˚S) to extend the climate record back to 1870. With modelling we show today's high climate variability became established in the ~1940s and likely driven by a Rossby wave response originating from the tropical Pacific.
J. M. van Wessem, S. R. M. Ligtenberg, C. H. Reijmer, W. J. van de Berg, M. R. van den Broeke, N. E. Barrand, E. R. Thomas, J. Turner, J. Wuite, T. A. Scambos, and E. van Meijgaard
The Cryosphere, 10, 271–285, https://doi.org/10.5194/tc-10-271-2016, https://doi.org/10.5194/tc-10-271-2016, 2016
Short summary
Short summary
This study presents the first high-resolution (5.5 km) modelled estimate of surface mass balance (SMB) over the period 1979–2014 for the Antarctic Peninsula (AP). Precipitation (snowfall and rain) largely determines the SMB, and is exceptionally high over the western mountain slopes, with annual values > 4 m water equivalent. Snowmelt is widespread over the AP, but only runs off into the ocean at some locations: the Larsen B,C, and Wilkins ice shelves, and along the north-western mountains.
Related subject area
Discipline: Other | Subject: Ice Cores
Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons
Deep ice as a geochemical reactor: insights from iron speciation and mineralogy of dust in the Talos Dome ice core (East Antarctica)
Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction
Challenges associated with the climatic interpretation of water stable isotope records from a highly resolved firn core from Adélie Land, coastal Antarctica
Michael N. Dyonisius, Vasilii V. Petrenko, Andrew M. Smith, Benjamin Hmiel, Peter D. Neff, Bin Yang, Quan Hua, Jochen Schmitt, Sarah A. Shackleton, Christo Buizert, Philip F. Place, James A. Menking, Ross Beaudette, Christina Harth, Michael Kalk, Heidi A. Roop, Bernhard Bereiter, Casey Armanetti, Isaac Vimont, Sylvia Englund Michel, Edward J. Brook, Jeffrey P. Severinghaus, Ray F. Weiss, and Joseph R. McConnell
The Cryosphere, 17, 843–863, https://doi.org/10.5194/tc-17-843-2023, https://doi.org/10.5194/tc-17-843-2023, 2023
Short summary
Short summary
Cosmic rays that enter the atmosphere produce secondary particles which react with surface minerals to produce radioactive nuclides. These nuclides are often used to constrain Earth's surface processes. However, the production rates from muons are not well constrained. We measured 14C in ice with a well-known exposure history to constrain the production rates from muons. 14C production in ice is analogous to quartz, but we obtain different production rates compared to commonly used estimates.
Giovanni Baccolo, Barbara Delmonte, Elena Di Stefano, Giannantonio Cibin, Ilaria Crotti, Massimo Frezzotti, Dariush Hampai, Yoshinori Iizuka, Augusto Marcelli, and Valter Maggi
The Cryosphere, 15, 4807–4822, https://doi.org/10.5194/tc-15-4807-2021, https://doi.org/10.5194/tc-15-4807-2021, 2021
Short summary
Short summary
As scientists are pushing efforts to recover deep ice cores to extend paleoclimatic reconstructions, it is now essential to explore deep ice. The latter was considered a relatively stable environment, but this view is changing. This study shows that the conditions of deep ice promote the interaction between soluble and insoluble impurities, favoring complex geochemical reactions that lead to the englacial dissolution and precipitation of specific minerals present in atmospheric mineral dust.
Ling Fang, Theo M. Jenk, Thomas Singer, Shugui Hou, and Margit Schwikowski
The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021, https://doi.org/10.5194/tc-15-1537-2021, 2021
Short summary
Short summary
The interpretation of the ice-core-preserved signal requires a precise chronology. Radiocarbon (14C) dating of the water-insoluble organic carbon (WIOC) fraction has become an important dating tool. However, this method is restricted by the low concentration in the ice. In this work, we report first 14C dating results using the dissolved organic carbon (DOC) fraction. The resulting ages are comparable in both fractions, but by using the DOC fraction the required ice mass can be reduced.
Sentia Goursaud, Valérie Masson-Delmotte, Vincent Favier, Suzanne Preunkert, Michel Legrand, Bénédicte Minster, and Martin Werner
The Cryosphere, 13, 1297–1324, https://doi.org/10.5194/tc-13-1297-2019, https://doi.org/10.5194/tc-13-1297-2019, 2019
Short summary
Short summary
We report new water stable isotope records from the first highly resolved firn core drilled in Adélie Land and covering 1998–2014. Using an updated database, we show that mean values are in line with the range of coastal values. Statistical analyses show no relationship between our record and local surface air temperature. Atmospheric back trajectories and isotopic simulations suggest that water stable isotopes in Adélie provide a fingerprint of the variability of atmospheric dynamics.
Cited articles
Abram, N. J., Wolff, E. W., and Curran, M. A. J.: A review of sea ice proxy
information from polar ice cores, Quaternary Sci. Rev., 79, 168–183,
https://doi.org/10.1016/j.quascirev.2013.01.011, 2013.
Allen, C. S., Pike, J., and Pudsey, C. J.: Last glacial–interglacial
sea-ice cover in the SW Atlantic and its potential role in global
deglaciation, Quaternary Sci. Rev., 30, 2446–2458,
https://doi.org/10.1016/j.quascirev.2011.04.002, 2011.
Allen, C. S., Thomas, E. R., Blagbrough, H., Tetzner, D. R., Warren, R. A.,
Ludlow, E. C., and Bracegirdle, T. J.: Preliminary Evidence for the Role
Played by South Westerly Wind Strength on the Marine Diatom Content of an
Antarctic Peninsula Ice Core (1980–2010), 10, 87,
https://doi.org/10.3390/geosciences10030087, 2020.
Alvain, S., Moulin, C., Dandonneau, Y., and Loisel, H.: Seasonal
distribution and succession of dominant phytoplankton groups in the global
ocean: A satellite view, Global Biogeochem. Cy., 22, GB3001, https://doi.org/10.1029/2007GB003154, 2008.
Armand, L. K., Crosta, X., Romero, O., and Pichon, J.-J.: The biogeography
of major diatom taxa in Southern Ocean sediments: 1. Sea ice related
species, Palaeogeogr. Palaeocl., 223, 93–126,
https://doi.org/10.1016/j.palaeo.2005.02.015, 2005.
Arrigo, K. R. and van Dijken, G. L.: Phytoplankton dynamics within 37
Antarctic coastal polynya systems, J. Geophys. Res.-Oceans,
108, 3271, https://doi.org/10.1029/2002JC001739, 2003.
Arrigo, K. R., Worthen, D., Schnell, A., and Lizotte, M. P.: Primary
production in Southern Ocean waters, J. Geophys. Res.-Oceans, 103, 15587–15600,
https://doi.org/10.1029/98JC00930, 1998.
Arrigo, K. R., van Dijken, G. L., and Bushinsky, S.: Primary production in
the Southern Ocean, 1997–2006, J. Geophys. Res.-Oceans, 113, C08004, https://doi.org/10.1029/2007JC004551,
2008.
Arrigo, K. R., Lowry, K. E., and van Dijken, G. L.: Annual changes in sea
ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica, Deep-Sea
Res. Pt. II, 71–76, 5–15,
https://doi.org/10.1016/j.dsr2.2012.03.006, 2012.
Barrett, P. J.: Resolving views on Antarctic Neogene glacial history – the
Sirius debate, Earth Env. Sci. T. R. So., 104, 31–53, https://doi.org/10.1017/S175569101300008X, 2013.
Bleakley, N. L.: Geology of the Sirius Group at Mount Feather and Table Mountain, South Victoria Land, Antarctica, Open Access Victoria University of Wellington, Te Herenga Waka, Thesis, https://doi.org/10.26686/wgtn.17004730.v1, 1996.
Bouchard, G., Gajewski, K., and Hamilton, P. B.: Freshwater diatom
biogeography in the Canadian Arctic Archipelago, J. Biogeogr., 31, 1955–1973,
https://doi.org/10.1111/j.1365-2699.2004.01143.x, 2004.
Breider, T. J., Mickley, L. J., Jacob, D. J., Wang, Q., Fisher, J. A.,
Chang, R. Y.-W., and Alexander, B.: Annual distributions and sources of
Arctic aerosol components, aerosol optical depth, and aerosol absorption, J. Geophys. Res.-Atmos.,
119, 4107–4124, https://doi.org/10.1002/2013JD020996, 2014.
Buda, J., Łokas, E., Pietryka, M., Richter, D., Magowski, W., Iakovenko,
N. S., Porazinska, D. L., Budzik, T., Grabiec, M., Grzesiak, J., Klimaszyk,
P., Gaca, P., and Zawierucha, K.: Biotope and biocenosis of cryoconite hole
ecosystems on Ecology Glacier in the maritime Antarctic, Sci.
Total Environ., 724, 138112,
https://doi.org/10.1016/j.scitotenv.2020.138112, 2020.
Budgeon, A. L.: The use of diatoms in atmospheric particulate matter for
source reconstructions in Antarctica: procedures and practicalities, PhD
thesis, School of Earth Sciences, The University of Queensland, 2013.
Budgeon, A. L., Roberts, D., Gasparon, M., and Adams, N.: Direct evidence of
aeolian deposition of marine diatoms to an ice sheet, Antarct. Sci., 24, 527–535,
https://doi.org/10.1017/S0954102012000235, 2012.
Burckle, L. H., Gayley, R. I., Ram, M., and Petit, J.-R.: Diatoms in
Antarctic ice cores: Some implications for the glacial history of
Antarctica, Geology, 16, 326–329,
https://doi.org/10.1130/0091-7613(1988)016<0326:DIAICS>2.3.CO;2, 1988.
Cavacini, P.: Soil algae from northern Victoria Land (Antarctica), Polar Bioscience Journal, 14,
45–60, 2001.
Cefarelli, A. O., Ferrario, M. E., Almandoz, G. O., Atencio, A. G.,
Akselman, R., and Vernet, M.: Diversity of the diatom genus Fragilariopsis
in the Argentine Sea and Antarctic waters: morphology, distribution and
abundance, Polar Biol., 33, 1463–1484,
https://doi.org/10.1007/s00300-010-0794-z, 2010.
Chalmers, M. O., Harper, M. A., and Marshall, W. A.: An illustrated
catalogue of airborne microbiota from the maritime Antarctic, British
Antarctic Survey, Cambridge, 175 pp., ISBN 0856651796, 1996.
Cipriano, R. J. and Blanchard, D. C.: Bubble and aerosol spectra produced by
a laboratory “breaking wave”, J. Geophys. Res.-Oceans, 86, 8085–8092,
https://doi.org/10.1029/JC086iC09p08085, 1981.
Cook, A. J., Fox, A. J., Vaughan, D. G., and Ferrigno, J. G.: Retreating
glacier fronts on the Antarctic Peninsula over the past half-century,
Science, 308, 541–544, https://doi.org/10.1126/science.1104235, 2005.
Crosta, X., Romero, O., Armand, L. K., and Pichon, J.-J.: The biogeography
of major diatom taxa in Southern Ocean sediments: 2. Open ocean related
species, Palaeogeogr. Palaeocl., 223, 66–92,
https://doi.org/10.1016/j.palaeo.2005.03.028, 2005.
Darcy, J. L., Gendron, E. M. S., Sommers, P., Porazinska, D. L., and
Schmidt, S. K.: Island Biogeography of Cryoconite Hole Bacteria in
Antarctica's Taylor Valley and Around the World, Front. Ecol. Evol., 6, 180,
https://doi.org/10.3389/fevo.2018.00180, 2018.
Delmonte, B., Baroni, C., Andersson, P. S., Narcisi, B., Salvatore, M. C.,
Petit, J. R., Scarchilli, C., Frezzotti, M., Albani, S., and Maggi, V.:
Modern and Holocene aeolian dust variability from Talos Dome (Northern
Victoria Land) to the interior of the Antarctic ice sheet, Quaternary Sci. Rev., 64, 76–89,
https://doi.org/10.1016/j.quascirev.2012.11.033, 2013.
Delmonte, B., Paleari, C. I., Andò, S., Garzanti, E., Andersson, P. S.,
Petit, J. R., Crosta, X., Narcisi, B., Baroni, C., Salvatore, M. C.,
Baccolo, G., and Maggi, V.: Causes of dust size variability in central East
Antarctica (Dome B): Atmospheric transport from expanded South American
sources during Marine Isotope Stage 2, Quaternary Sci. Rev., 168,
55–68, https://doi.org/10.1016/j.quascirev.2017.05.009, 2017.
Dirscherl, M. C., Dietz, A. J., and Kuenzer, C.: Seasonal evolution of Antarctic supraglacial lakes in 2015–2021 and links to environmental controls, The Cryosphere, 15, 5205–5226, https://doi.org/10.5194/tc-15-5205-2021, 2021.
Elster, J., Delmas, R. J., Petit, J.-R., and Řeháková, K.: Composition of microbial communities in aerosol, snow and ice samples from remote glaciated areas (Antarctica, Alps, Andes), Biogeosciences Discuss., 4, 1779–1813, https://doi.org/10.5194/bgd-4-1779-2007, 2007.
Esposito, R. M. M., Spaulding, S. A., McKnight, D. M., Van de Vijver, B.,
Kopalová, K., Lubinski, D., Hall, B., and Whittaker, T.: Inland diatoms
from the McMurdo Dry Valleys and James Ross Island, Antarctica, Botany, 86,
1378–1392, https://doi.org/10.1139/B08-100, 2008.
Farmer, D. M., McNeil, C. L., and Johnson, B. D.: Evidence for the
importance of bubbles in increasing air–sea gas flux, Nature, 361, 620–623,
https://doi.org/10.1038/361620a0, 1993.
Fernandes, R., Dupont, S., and Lamaud, E.: Investigating the role of
deposition on the size distribution of near-surface dust flux during erosion
events, Aeolian Res., 37, 32–43,
https://doi.org/10.1016/j.aeolia.2019.02.002, 2019.
Fernandoy, F., Tetzner, D., Meyer, H., Gacitúa, G., Hoffmann, K., Falk, U., Lambert, F., and MacDonell, S.: New insights into the use of stable water isotopes at the northern Antarctic Peninsula as a tool for regional climate studies, The Cryosphere, 12, 1069–1090, https://doi.org/10.5194/tc-12-1069-2018, 2018.
Fetterer, F., Knowles, K., Meier, W. N., Savoie, M., and Windnagel, A. K.: Sea
Ice Index, Version 3. Sea Ice Extent dataset, Boulder, Colorado USA, NSIDC,
National Snow and Ice Data Center [data set], https://doi.org/10.7265/N5K072F8, 2017.
Fountain, A. G., Tranter, M., Nylen, T. H., Lewis, K. J., and Mueller, D.
R.: Evolution of cryoconite holes and their contribution to meltwater runoff
from glaciers in the McMurdo Dry Valleys, Antarctica, J. Glaciol., 50, 35–45,
https://doi.org/10.3189/172756504781830312, 2004.
Frey, M. M., Bales, R. C., and McConnell, J. R.: Climate sensitivity of the
century-scale hydrogen peroxide (H2O2) record preserved in 23 ice cores from
West Antarctica, J. Geophys. Res.-Atmos., 111, D21301, https://doi.org/10.1029/2005JD006816, 2006.
Fritz, S. C., Brinson, B. E., Billups, W. E., and Thompson, L. G.: Diatoms
at > 5000 Meters in the Quelccaya Summit Dome Glacier, Peru, Arct. Antarct. Alp. Res., 47,
369–374, https://doi.org/10.1657/AAAR0014-075, 2015.
Gayley, R. I., Ram, M., and Stoermer, E. F.: Seasonal variations in diatom
abundance and provenance in Greenland ice, J. Glaciol., 35, 290–292,
https://doi.org/10.3189/S0022143000004664, 1989.
Gersonde, R. and Wefer, G.: Sedimentation of biogenic siliceous particles in
Antarctic waters from the Atlantic sector, Mar. Micropaleontol., 11,
311–332, https://doi.org/10.1016/0377-8398(87)90004-1, 1987.
Giralt, S., Hernández, A., Pla-Rabes, S., Antoniades, D., Toro, M.,
Granados, I., and Oliva, M.: Chapter 3 – Holocene environmental changes
inferred from Antarctic lake sediments, in: Past Antarctica, edited by:
Oliva, M. and Ruiz-Fernández, J., Academic Press, 51–66,
https://doi.org/10.1016/B978-0-12-817925-3.00003-3, 2020.
Gonzalez, S. and Fortuny, D.: How robust are the temperature trends on the
Antarctic Peninsula?, Antarct. Sci., 30, 322–328,
https://doi.org/10.1017/S0954102018000251, 2018.
Goyal, R., Sen Gupta, A., Jucker, M., and England, M. H.: Historical and
Projected Changes in the Southern Hemisphere Surface Westerlies, Geophys. Res. Lett., 48,
e2020GL090849, https://doi.org/10.1029/2020GL090849, 2021.
Grieman, M. M., Hoffmann, H. M., Humby, J. D., Mulvaney, R., Nehrbass-Ahles,
C., Rix, J., Thomas, E. R., Tuckwell, R., and Wolff, E. W.: Continuous flow
analysis methods for sodium, magnesium and calcium detection in the Skytrain
ice core, J. Glaciol., https://doi.org/10.1017/jog.2021.75, online first, 2021.
Halse, G. R. and Syvertsen, E. E.: Chapter 2 – Marine Diatoms, in:
Identifying Marine Diatoms and Dinoflagellates, edited by: Tomas, C. R.,
Academic Press, San Diego, 5–385,
https://doi.org/10.1016/B978-012693015-3/50005-X, 1996.
Hamm, C. E., Merkel, R., Springer, O., Jurkojc, P., Maier, C., Prechtel, K.,
and Smetacek, V.: Architecture and material properties of diatom shells
provide effective mechanical protection, Nature, 421, 841–843,
https://doi.org/10.1038/nature01416, 2003.
Hamsher, S., Kopalová, K., Kociolek, J., Zidarova, R., and Van De
Vijver, B.: The genus Nitzschia on the South Shetland Islands and James Ross
Island, Fottea, 16, 79–102, https://doi.org/10.5507/fot.2015.023, 2016.
Harper, M. A. and McKay, R. M.: Diatoms as markers of atmospheric transport,
in: The Diatoms: Applications for the Environmental and Earth Sciences,
edited by: Stoermer, E. F. and Smol, J. P., Cambridge University Press,
Cambridge, 552–559, https://doi.org/10.1017/CBO9780511763175.032, 2010.
Hasle, G. R. and Tomas, C. R.: Chapter 1 – Introduction and Historical
Background, in: Identifying Marine Phytoplankton, edited by: Tomas, C. R.,
Academic Press, San Diego, 1–4,
https://doi.org/10.1016/B978-012693018-4/50003-3, 1997.
Hasle, G. R. and Syvertsen, E. E.: Chapter 2 – Marine Diatoms, in:
Identifying Marine Phytoplankton, edited by: Tomas, C. R., Academic Press,
San Diego, 5–385, https://doi.org/10.1016/B978-012693018-4/50004-5, 1997.
Hausmann, S., Larocque-Tobler, I., Richard, P. J. H., Pienitz, R., St-Onge,
G., and Fye, F.: Diatom-inferred wind activity at Lac du Sommet, southern
Québec, Canada: A multiproxy paleoclimate reconstruction based on
diatoms, chironomids and pollen for the past 9500 years, Holocene, 21,
925–938, https://doi.org/10.1177/0959683611400199, 2011.
Hazel, J. E. and Stewart, A. L.: Are the Near-Antarctic Easterly Winds
Weakening in Response to Enhancement of the Southern Annular Mode?, J. Climate, 32,
1895–1918, https://doi.org/10.1175/JCLI-D-18-0402.1, 2019.
Hodgson, D. A., Roberts, S. J., Bentley, M. J., Carmichael, E. L., Smith, J.
A., Verleyen, E., Vyverman, W., Geissler, P., Leng, M. J., and Sanderson, D.
C. W.: Exploring former subglacial Hodgson Lake, Antarctica. Paper II:
palaeolimnology, Quaternary Sci. Rev., 28, 2310–2325,
https://doi.org/10.1016/j.quascirev.2009.04.014, 2009.
Kellogg, D. E. and Kellogg, T. B.: Diatoms in South Pole ice: Implications
for eolian contamination of Sirius Group deposits, Geology, 24, 115–118,
https://doi.org/10.1130/0091-7613(1996)024<0115:DISPII>2.3.CO;2, 1996.
Kellogg, D. E. and Kellogg, T. B.: Frozen in Time:, in: Life in Ancient Ice,
edited by: Castello, J. D. and Rogers, S. O., Princeton University Press,
69–93, available at: http://www.jstor.org/stable/j.ctt1dr350p (last access: 19 January 2022), 2005.
Keskitalo, J., Leppäranta, M., and Arvola, L.: First records of primary
producers of epiglacial and supraglacial lakes in western Dronning Maud
Land, Antarctica, Polar Biol., 36, 1441–1450,
https://doi.org/10.1007/s00300-013-1362-0, 2013.
Koffman, B. G., Kreutz, K. J., Breton, D. J., Kane, E. J., Winski, D. A., Birkel, S. D., Kurbatov, A. V., and Handley, M. J.: Centennial-scale variability of the Southern Hemisphere westerly wind belt in the eastern Pacific over the past two millennia, Clim. Past, 10, 1125–1144, https://doi.org/10.5194/cp-10-1125-2014, 2014.
Lenaerts, J. T. M. and Broeke, M. R. van den: Modeling drifting snow in
Antarctica with a regional climate model: 2. Results, J. Geophys. Res.-Atmos., 117, D05109,
https://doi.org/10.1029/2010JD015419, 2012.
Li, F., Ramaswamy, V., Ginoux, P., Broccoli, A. J., Delworth, T., and Zeng,
F.: Toward understanding the dust deposition in Antarctica during the Last
Glacial Maximum: Sensitivity studies on plausible causes, J. Geophys. Res.-Atmos., 115, D24120,
https://doi.org/10.1029/2010JD014791, 2010.
Lichti-Federovich, S.: Investigation of diatoms found in surface snow from
the Sydkap ice cap, Ellesmere Island, Northwest Territories. Current
Research, Geological Survey of Canada, 84-01A, 287–301,
https://doi.org/10.4095/119677, 1984.
Lizotte, M. P.: The Contributions of Sea Ice Algae to Antarctic Marine
Primary Production, Am. Zool., 41, 57–73,
https://doi.org/10.1093/icb/41.1.57, 2001.
Lowe, R. L.: Comparative Ultrastructure of the Valves of Some Cyclotella
Species (bacillariophyceae), J. Phycol., 11, 415–424,
https://doi.org/10.1111/j.1529-8817.1975.tb02805.x, 1975.
Macdonell, S., Sharp, M., and Fitzsimons, S.: Cryoconite hole connectivity
on the Wright Lower Glacier, McMurdo Dry Valleys, Antarctica, J. Glaciol., 62, 714–724,
https://doi.org/10.1017/jog.2016.62, 2016.
Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J.,
Wincker, P., Iudicone, D., Vargas, C. de, Bittner, L., Zingone, A., and
Bowler, C.: Insights into global diatom distribution and diversity in the
world's ocean, P. Natl. Acad. Sci. USA, 113, E1516–E1525,
https://doi.org/10.1073/pnas.1509523113, 2016.
Marks, R., Górecka, E., McCartney, K., and Borkowski, W.: Rising bubbles
as mechanism for scavenging and aerosolization of diatoms, J.
Aerosol Sci., 128, 79–88,
https://doi.org/10.1016/j.jaerosci.2018.12.003, 2019.
Mayewski, P. A., Maasch, K. A., Dixon, D., Sneed, S. B., Oglesby, R.,
Korotkikh, E., Potocki, M., Grigholm, B., Kreutz, K., Kurbatov, A. V.,
Spaulding, N., Stager, J. C., Taylor, K. C., Steig, E. J., White, J.,
Bertler, N. A. N., Goodwin, I., Simões, J. C., Jaña, R., Kraus, S.,
and Fastook, J.: West Antarctica's sensitivity to natural and human-forced
climate change over the Holocene, J. Quaternary Sci., 28, 40–48,
https://doi.org/10.1002/jqs.2593, 2013.
McKay, R. M., Barrett, P. J., Harper, M. A., and Hannah, M. J.: Atmospheric
transport and concentration of diatoms in surficial and glacial sediments of
the Allan Hills, Transantarctic Mountains, Palaeogeogr.
Palaeocl., 260, 168–183,
https://doi.org/10.1016/j.palaeo.2007.08.014, 2008.
Menviel, L., Spence, P., Yu, J., Chamberlain, M. A., Matear, R. J.,
Meissner, K. J., and England, M. H.: Southern Hemisphere westerlies as a
driver of the early deglacial atmospheric CO2 rise, Nat. Commun., 9, 2503,
https://doi.org/10.1038/s41467-018-04876-4, 2018.
Noga, T., Kochman-Kędziora, N., Olech, M., and Van de Vijver, B.:
Limno-terrestrial diatom flora in two stream valleys near Arctowski Station,
King George Island, Antarctica, Pol. Polar Res., 41, 289–314,
https://doi.org/10.24425/ppr.2020.134793, 2020.
Orr, A., Cresswell, D., Marshall, G. J., Hunt, J. C. R., Sommeria, J., Wang,
C. G., and Light, M.: A “low-level” explanation for the recent large warming
trend over the western Antarctic Peninsula involving blocked winds and
changes in zonal circulation, Geophys. Res. Lett., 31, L06204, https://doi.org/10.1029/2003GL019160,
2004.
Papina, T., Blyakharchuk, T., Eichler, A., Malygina, N., Mitrofanova, E., and Schwikowski, M.: Biological proxies recorded in a Belukha ice core, Russian Altai, Clim. Past, 9, 2399–2411, https://doi.org/10.5194/cp-9-2399-2013, 2013.
Parkinson, C. L.: A 40-y record reveals gradual Antarctic sea ice increases
followed by decreases at rates far exceeding the rates seen in the Arctic,
P. Natl. Acad. Sci. USA, 116, 14414–14423, https://doi.org/10.1073/pnas.1906556116, 2019.
Parkinson, C. L. and Cavalieri, D. J.: Antarctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 871–880, https://doi.org/10.5194/tc-6-871-2012, 2012.
Pasteris, D. R., McConnell, J. R., Das, S. B., Criscitiello, A. S., Evans,
M. J., Maselli, O. J., Sigl, M., and Layman, L.: Seasonally resolved ice
core records from West Antarctica indicate a sea ice source of sea-salt
aerosol and a biomass burning source of ammonium, J. Geophys. Res.-Atmos., 119, 9168–9182,
https://doi.org/10.1002/2013JD020720, 2014.
Piel, C., Weller, R., Huke, M., and Wagenbach, D.: Atmospheric methane
sulfonate and non-sea-salt sulfate records at the European Project for Ice
Coring in Antarctica (EPICA) deep-drilling site in Dronning Maud Land,
Antarctica, J. Geophys. Res.-Atmos., 111, D03304, https://doi.org/10.1029/2005JD006213, 2006.
Rigual-Hernández, A. S., Trull, T. W., Bray, S. G., Cortina, A., and Armand, L. K.: Latitudinal and temporal distributions of diatom populations in the pelagic waters of the Subantarctic and Polar Frontal zones of the Southern Ocean and their role in the biological pump, Biogeosciences, 12, 5309–5337, https://doi.org/10.5194/bg-12-5309-2015, 2015.
Röthlisberger, R., Hutterli, M. A., Sommer, S., Wolff, E. W., and
Mulvaney, R.: Factors controlling nitrate in ice cores: Evidence from the
Dome C deep ice core, J. Geophys. Res.-Atmos., 105, 20565–20572,
https://doi.org/10.1029/2000JD900264, 2000.
Rousseaux, C. S. and Gregg, W. W.: Interannual Variation in Phytoplankton
Primary Production at A Global Scale, Remote Sens.-Basel, 6, 1–19,
https://doi.org/10.3390/rs6010001, 2014.
Ruiz-Fernández, J., Oliva, M., Nývlt, D., Cannone, N.,
García-Hernández, C., Guglielmin, M., Hrbáček, F., Roman,
M., Fernández, S., López-Martínez, J., and Antoniades, D.:
Patterns of spatio-temporal paraglacial response in the Antarctic Peninsula
region and associated ecological implications, Earth-Sci. Rev., 192,
379–402, https://doi.org/10.1016/j.earscirev.2019.03.014, 2019.
Scherer, R. P., DeConto, R. M., Pollard, D., and Alley, R. B.: Windblown
Pliocene diatoms and East Antarctic Ice Sheet retreat, Nat. Commun., 7, 12957,
https://doi.org/10.1038/ncomms12957, 2016.
Seehaus, T., Cook, A. J., Silva, A. B., and Braun, M.: Changes in glacier dynamics in the northern Antarctic Peninsula since 1985, The Cryosphere, 12, 577–594, https://doi.org/10.5194/tc-12-577-2018, 2018.
Siegert, M., Atkinson, A., Banwell, A., Brandon, M., Convey, P., Davies, B.,
Downie, R., Edwards, T., Hubbard, B., Marshall, G., Rogelj, J., Rumble, J.,
Stroeve, J., and Vaughan, D.: The Antarctic Peninsula Under a 1.5∘
C Global Warming Scenario, Front. Environ., 7, 102, https://doi.org/10.3389/fenvs.2019.00102,
2019.
Simoes, J., Ferron, F., Bernardo, R., Aristarain, A., Stiévenard, M.,
Pourchet, M., and Delmas, R.: Ice core study from King George Island, South
Shetlands, Antarctica, Pesquisa Antártica Brasileira, 4, 9–23, 2004.
Smith, J. A., Hodgson, D. A., Bentley, M. J., Verleyen, E., Leng, M. J., and
Roberts, S. J.: Limnology of Two Antarctic Epishelf Lakes and their
Potential to Record Periods of Ice Shelf Loss, J. Paleolimnol., 35, 373–394,
https://doi.org/10.1007/s10933-005-1333-8, 2006.
Smith, W. O. and Comiso, J. C.: Influence of sea ice on primary production
in the Southern Ocean: A satellite perspective, J. Geophys. Res.-Oceans, 113, C05S93,
https://doi.org/10.1029/2007JC004251, 2008.
Smol, J. P. and Stoermer, E. F. (Eds.): The Diatoms: Applications for the
Environmental and Earth Sciences, 2nd Edn., Cambridge University Press,
Cambridge, https://doi.org/10.1017/CBO9780511763175, 2010.
Soppa, M. A., Völker, C., and Bracher, A.: Diatom Phenology in the
Southern Ocean: Mean Patterns, Trends and the Role of Climate Oscillations, Remote Sens.-Basel,
8, 420, https://doi.org/10.3390/rs8050420, 2016.
Spaulding, S. A., Van de Vijver, B., Hodgson, D. A., McKnight, D. M.,
Verleyen, E., and Stanish, L.: Diatoms as indicators of environmental change
in Antarctic and subantarctic freshwaters, in: The Diatoms: Applications for
the Environmental and Earth Sciences, edited by: Stoermer, E. F. and Smol,
J. P., Cambridge University Press, Cambridge, 267–284,
https://doi.org/10.1017/CBO9780511763175.015, 2010.
Stammerjohn, S., Massom, R., Rind, D., and Martinson, D.: Regions of rapid
sea ice change: An inter-hemispheric seasonal comparison, Geophys. Res. Lett., 39, L06501,
https://doi.org/10.1029/2012GL050874, 2012.
Stanish, L. F., Bagshaw, E. A., McKnight, D. M., Fountain, A. G., and
Tranter, M.: Environmental factors influencing diatom communities in
Antarctic cryoconite holes, Environ. Res. Lett., 8, 045006,
https://doi.org/10.1088/1748-9326/8/4/045006, 2013.
Sudarchikova, N., Mikolajewicz, U., Timmreck, C., O'Donnell, D., Schurgers, G., Sein, D., and Zhang, K.: Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica, Clim. Past, 11, 765–779, https://doi.org/10.5194/cp-11-765-2015, 2015.
Tesson, S. V. M., Skjøth, C. A., Šantl-Temkiv, T., and Löndahl,
J.: Airborne Microalgae: Insights, Opportunities, and Challenges, Appl.
Environ. Microb., 82, 1978–1991, https://doi.org/10.1128/AEM.03333-15,
2016.
Tetzner, D., Thomas, E., and Allen, C.: A Validation of ERA5 Reanalysis Data
in the Southern Antarctic Peninsula – Ellsworth Land Region, and Its
Implications for Ice Core Studies, Geosciences, 9, 289,
https://doi.org/10.3390/geosciences9070289, 2019.
Tetzner, D., Thomas, E. R., Allen, C. S., and Wolff, E. W.: A Refined Method
to Analyze Insoluble Particulate Matter in Ice Cores, and Its Application to
Diatom Sampling in the Antarctic Peninsula, Front. Earth Sci., 9, 617043,
https://doi.org/10.3389/feart.2021.617043, 2021a.
Tetzner, D. R., Thomas, E. R., Allen, C. S., and Piermattei, A.: Evidence of recent active volcanism in the Balleny Islands (Antarctica) from ice core records, J. Geophys. Res.-Atmos., 126, e2021JD035095, https://doi.org/10.1029/2021JD035095, 2021b.
Tetzner, D., Allen, C., and Thomas, E.: Annual and sub-annual diatom abundance and distribution in the Jurassic, Rothschild Island, Sherman Island and Sky-Blu ice cores (1992–2019 CE) (Version 1.0), NERC EDS UK Polar Data Centre [data set], https://doi.org/10.5285/E7166724-E7FA-4267-A2A7-6207EDE57F70, 2022.
Thoen, I. U., Simões, J. C., Lindau, F. G. L., Sneed, S. B., Thoen, I.
U., Simões, J. C., Lindau, F. G. L., and Sneed, S. B.: Ionic content in
an ice core from the West Antarctic Ice Sheet: 1882–2008 A.D., Braz. J. Geol., 48, 853–865,
https://doi.org/10.1590/2317-4889201820180037, 2018.
Thomas, E. R. and Bracegirdle, T. J.: Improving ice core interpretation
using in situ and reanalysis data, J. Geophys. Res.-Atmos., 114, D20116,
https://doi.org/10.1029/2009JD012263, 2009.
Thomas, E. R. and Bracegirdle, T. J.: Precipitation pathways for five new
ice core sites in Ellsworth Land, West Antarctica, Clim. Dynam., 44, 2067–2078,
https://doi.org/10.1007/s00382-014-2213-6, 2015.
Thomas, E. R. and Tetzner, D. R.: The Climate of the Antarctic Peninsula
during the Twentieth Century: Evidence from Ice Cores, in: Antarctica – A Key To Global Change, edited by: Kanao, M., Toyokuni, G., and Yamamoto, M., IntechOpen,
https://doi.org/10.5772/intechopen.81507, 2018.
Thomas, E. R., Marshall, G. J., and McConnell, J. R.: A doubling in snow
accumulation in the western Antarctic Peninsula since 1850, Geophys. Res. Lett., 35, L01706,
https://doi.org/10.1029/2007GL032529, 2008.
Thomas, E. R., Allen, C. S., Etourneau, J., King, A. C. F., Severi, M.,
Winton, V. H. L., Mueller, J., Crosta, X., and Peck, V. L.: Antarctic Sea
Ice Proxies from Marine and Ice Core Archives Suitable for Reconstructing
Sea Ice over the Past 2000 Years, Geosciences, 9, 506,
https://doi.org/10.3390/geosciences9120506, 2019.
Thomas, E. R., Gacitúa, G., Pedro, J. B., Faith King, A. C., Markle, B., Potocki, M., and Moser, D. E.: Physical properties of shallow ice cores from Antarctic and sub-Antarctic islands, The Cryosphere, 15, 1173–1186, https://doi.org/10.5194/tc-15-1173-2021, 2021.
Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J., and Orr, A.: The
Amundsen Sea low, Int. J. Climatol., 33, 1818–1829, https://doi.org/10.1002/joc.3558, 2013.
Turner, J., Phillips, T., Thamban, M., Rahaman, W., Marshall, G. J., Wille,
J. D., Favier, V., Winton, V. H. L., Thomas, E., Wang, Z., van den Broeke, M., Hosking, J. S., and Lachlan-Cope, T.: The Dominant Role of Extreme
Precipitation Events in Antarctic Snowfall Variability, Geophys. Res. Lett., 46, 3502–3511,
https://doi.org/10.1029/2018GL081517, 2019.
Van de Vijver, B. and Beyens, L.: A preliminary study on the soil diatom
assemblages from Ile de la Possession (Crozet, Subantarctica), Eur.
J. Soil Biol., 34, 133–141,
https://doi.org/10.1016/S1164-5563(00)88650-1, 1998.
Van de Vijver, B. and Beyens, L.: Freshwater diatoms from Ile de la
Possession (Crozet Archipelago, sub-Antarctica): an ecological assessment,
Polar Biol., 22, 178–188, https://doi.org/10.1007/s003000050408, 1999.
van Wessem, J. M., Reijmer, C. H., van de Berg, W. J., van
den Broeke, M. R., Cook, A. J., van Ulft, L. H., and van Meijgaard, E.: Temperature and
Wind Climate of the Antarctic Peninsula as Simulated by a High-Resolution
Regional Atmospheric Climate Model, J. Climate, 28, 7306–7326,
https://doi.org/10.1175/JCLI-D-15-0060.1, 2015.
van Wessem, J. M., Ligtenberg, S. R. M., Reijmer, C. H., van de Berg, W. J., van den Broeke, M. R., Barrand, N. E., Thomas, E. R., Turner, J., Wuite, J., Scambos, T. A., and van Meijgaard, E.: The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution, The Cryosphere, 10, 271–285, https://doi.org/10.5194/tc-10-271-2016, 2016.
Verleyen, E., Van de Vijver, B., Tytgat, B., Pinseel, E., Hodgson, D. A.,
Kopalová, K., Chown, S. L., Van Ranst, E., Imura, S., Kudoh, S., Van
Nieuwenhuyze, W., Consortium, A., Sabbe, K., and Vyverman, W.: Diatoms
define a novel freshwater biogeography of the Antarctic, Ecography, 44, 548–560,
https://doi.org/10.1111/ecog.05374, 2021.
Wang, L., Lu, H., Liu, J., Gu, Z., Mingram, J., Chu, G., Li, J., Rioual, P.,
Negendank, J. F. W., Han, J., and Liu, T.: Diatom-based inference of
variations in the strength of Asian winter monsoon winds between 17,500 and
6000 calendar years B.P., J. Geophys. Res.-Atmos., 113, D21101, https://doi.org/10.1029/2008JD010145, 2008.
Warnock, J. P. and Scherer, R. P.: Diatom species abundance and
morphologically-based dissolution proxies in coastal Southern Ocean
assemblages, Cont. Shelf Res., 102, 1–8,
https://doi.org/10.1016/j.csr.2015.04.012, 2015.
Weisleitner, K., Perras, A. K., Unterberger, S. H., Moissl-Eichinger, C.,
Andersen, D. T., and Sattler, B.: Cryoconite Hole Location in East-Antarctic
Untersee Oasis Shapes Physical and Biological Diversity, Front. Microbiol., 11, 1165,
https://doi.org/10.3389/fmicb.2020.01165, 2020.
Wolff, E. W., Hall, J. S., Mulvaney, R., Pasteur, E. C., Wagenbach, D., and
Legrand, M.: Relationship between chemistry of air, fresh snow and firn
cores for aerosol species in coastal Antarctica, J. Geophys. Res.-Atmos., 103, 11057–11070,
https://doi.org/10.1029/97JD02613, 1998.
Young, I. R. and Ribal, A.: Multiplatform evaluation of global trends in
wind speed and wave height, Science, 364, 548–552,
https://doi.org/10.1126/science.aav9527, 2019.
Yu, L., Zhong, S., and Sun, B.: The Climatology and Trend of Surface Wind
Speed over Antarctica and the Southern Ocean and the Implication to Wind
Energy Application, Atmosphere, 11, 108, https://doi.org/10.3390/atmos11010108, 2020.
Zielinski, U. and Gersonde, R.: Diatom distribution in Southern Ocean
surface sediments (Atlantic sector): Implications for paleoenvironmental
reconstructions, Palaeogeogr. Palaeocl., 129,
213–250, https://doi.org/10.1016/S0031-0182(96)00130-7, 1997.
Short summary
The presence of diatoms in Antarctic ice cores has been scarcely documented and poorly understood. Here we present a detailed analysis of the spatial and temporal distribution of the diatom record preserved in a set of Antarctic ice cores. Our results reveal that the timing and amount of diatoms deposited present a strong geographical division. This study highlights the potential of the diatom record preserved in Antarctic ice cores to provide useful information about past environmental changes.
The presence of diatoms in Antarctic ice cores has been scarcely documented and poorly...