Articles | Volume 16, issue 10
https://doi.org/10.5194/tc-16-4033-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-4033-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variation in bacterial composition, diversity, and activity across different subglacial basal ice types
Department of Oceanography, Texas A&M University, College Station,
TX, 77843, USA
Brent C. Christner
Department of Microbiology and Cell Science, University of Florida,
Gainesville, FL, 32611, USA
Related authors
No articles found.
Adrian Barry-Sosa, Madison K. Flint, Justin C. Ellena, Jonathan B. Martin, and Brent C. Christner
Biogeosciences, 21, 3965–3984, https://doi.org/10.5194/bg-21-3965-2024, https://doi.org/10.5194/bg-21-3965-2024, 2024
Short summary
Short summary
This study examined springs in north central Florida focusing on how interactions between the surface and subsurface affected the properties of groundwater microbes. We found that microbes reproduced at rates that greatly exceed those documented for any other aquifer. Although the groundwater discharged to spring runs contains low concentrations of nutrients, our results indicate that microbes have access to sources of energy and produce new cells at rates similar to surface waterbodies.
Brent C. Christner, Heather F. Lavender, Christina L. Davis, Erin E. Oliver, Sarah U. Neuhaus, Krista F. Myers, Birgit Hagedorn, Slawek M. Tulaczyk, Peter T. Doran, and William C. Stone
The Cryosphere, 12, 3653–3669, https://doi.org/10.5194/tc-12-3653-2018, https://doi.org/10.5194/tc-12-3653-2018, 2018
Short summary
Short summary
Solar radiation that penetrates into the glacier heats the ice to produce nutrient-containing meltwater and provides light that fuels an ecosystem within the ice. Our analysis documents a near-surface photic zone in a glacier that functions as a liquid water oasis in the ice over half the annual cycle. Since microbial growth on glacier surfaces reduces the amount of solar radiation reflected, microbial processes at depths below the surface may also darken ice and accelerate meltwater production.
Related subject area
Discipline: Glaciers | Subject: Biogeochemistry/Biology
Biogeochemical evolution of ponded meltwater in a High Arctic subglacial tunnel
Heterogeneous CO2 and CH4 content of glacial meltwater from the Greenland Ice Sheet and implications for subglacial carbon processes
Microbial processes in the weathering crust aquifer of a temperate glacier
Ashley J. Dubnick, Rachel L. Spietz, Brad D. Danielson, Mark L. Skidmore, Eric S. Boyd, Dave Burgess, Charvanaa Dhoonmoon, and Martin Sharp
The Cryosphere, 17, 2993–3012, https://doi.org/10.5194/tc-17-2993-2023, https://doi.org/10.5194/tc-17-2993-2023, 2023
Short summary
Short summary
At the end of an Arctic winter, we found ponded water 500 m under a glacier. We explored the chemistry and microbiology of this unique, dark, and cold aquatic habitat to better understand ecology beneath glaciers. The water was occupied by cold-loving and cold-tolerant microbes with versatile metabolisms and broad habitat ranges and was depleted in compounds commonly used by microbes. These results show that microbes can become established beneath glaciers and deplete nutrients within months.
Andrea J. Pain, Jonathan B. Martin, Ellen E. Martin, Åsa K. Rennermalm, and Shaily Rahman
The Cryosphere, 15, 1627–1644, https://doi.org/10.5194/tc-15-1627-2021, https://doi.org/10.5194/tc-15-1627-2021, 2021
Short summary
Short summary
The greenhouse gases (GHGs) methane and carbon dioxide can be produced or consumed by geochemical processes under the Greenland Ice Sheet (GrIS). Chemical signatures and concentrations of GHGs in GrIS discharge show that organic matter remineralization produces GHGs in some locations, but mineral weathering dominates and consumes CO2 in other locations. Local processes will therefore determine whether melting of the GrIS is a positive or negative feedback on climate change driven by GHG forcing.
Brent C. Christner, Heather F. Lavender, Christina L. Davis, Erin E. Oliver, Sarah U. Neuhaus, Krista F. Myers, Birgit Hagedorn, Slawek M. Tulaczyk, Peter T. Doran, and William C. Stone
The Cryosphere, 12, 3653–3669, https://doi.org/10.5194/tc-12-3653-2018, https://doi.org/10.5194/tc-12-3653-2018, 2018
Short summary
Short summary
Solar radiation that penetrates into the glacier heats the ice to produce nutrient-containing meltwater and provides light that fuels an ecosystem within the ice. Our analysis documents a near-surface photic zone in a glacier that functions as a liquid water oasis in the ice over half the annual cycle. Since microbial growth on glacier surfaces reduces the amount of solar radiation reflected, microbial processes at depths below the surface may also darken ice and accelerate meltwater production.
Cited articles
Abyzov, S., Mitskevich, I., and Poglazova, M.: The Microflora of Deep
Horizons of the Central Antarctic Ice Sheet, Mikrobiologiya, 67, 547–555, 1998.
Achberger, A. M., Michaud, A. B., Vick-Majors, T. J., Christner, B. C., Skidmore, M. L., Priscu, J. C., and Tranter, M.: Microbiology of subglacial environments, in: Psychrophiles: from biodiversity to biotechnology, edited by: Margesin, R., Springer, 83–110, ISBN 978-3-319-57056-3, 2017.
Aciego, S. M., Cuffey, K. M., Kavanaugh, J. L., Morse, D. L., and
Severinghaus, J. P.: Pleistocene ice and paleo-strain rates at Taylor
Glacier, Antarctica, Quaternary Res., 68, 303–313,
https://doi.org/10.1016/j.yqres.2007.07.013, 2007.
Amato, P. and Christner, B. C.: Energy Metabolism Response to
Low-Temperature and Frozen Conditions in Psychrobacter cryohalolentis, Appl. Environ. Microbiol., 75,
711–718, https://doi.org/10.1128/AEM.02193-08, 2009.
Amato, P., Doyle, S. M., Battista, J. R., and Christner, B. C.: Implications
of Subzero Metabolic Activity on Long-Term Microbial Survival in Terrestrial
and Extraterrestrial Permafrost, Astrobiology, 10, 789–798,
https://doi.org/10.1089/ast.2010.0477, 2010.
Bakermans, C. and Skidmore, M. L.: Microbial Metabolism in Ice and Brine at
−5 ∘C: Microbial metabolism in ice and brine at −5 ∘C, Environ. Microbiol., 13, 2269–2278, https://doi.org/10.1111/j.1462-2920.2011.02485.x, 2011.
Barker, J. D., Grottoli, A. G., and Lyons, W. B.: Stable isotope evidence
for the biogeochemical transformation of ancient organic matter beneath
Suess Glacier, Antarctica, Arct. Antarct. Alp. Res., 50, e1448643,
https://doi.org/10.1080/15230430.2018.1448643, 2018.
Batjes, N. H.: Total carbon and nitrogen in the soils of the world, Eur. J. Soil Sci., 65,
10–21, https://doi.org/10.1111/ejss.12114_2, 2014.
Bell, R. E., Ferraccioli, F., Creyts, T. T., Braaten, D., Corr, H., Das, I.,
Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M., and
Wolovick, M.: Widespread Persistent Thickening of the East Antarctic Ice
Sheet by Freezing from the Base, Science, 331, 1592–1595,
https://doi.org/10.1126/science.1200109, 2011.
Bhatia, M. P., Das, S. B., Xu, L., Charette, M. A., Wadham, J. L., and
Kujawinski, E. B.: Organic carbon export from the Greenland ice sheet,
Geochim. Cosmochim. Ac., 109, 329–344,
https://doi.org/10.1016/j.gca.2013.02.006, 2013.
Blazewicz, S. J., Barnard, R. L., Daly, R. A., and Firestone, M. K.:
Evaluating rRNA as an indicator of microbial activity in environmental
communities: limitations and uses, ISME J., 7, 2061–2068,
https://doi.org/10.1038/ismej.2013.102, 2013.
Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A., and Rapp, J. Z.:
Microbial ecology of the cryosphere: sea ice and glacial habitats, Nat. Rev. Microbiol., 13,
677–690, https://doi.org/10.1038/nrmicro3522, 2015.
Boyd, E. S., Skidmore, M., Mitchell, A. C., Bakermans, C., and Peters, J.
W.: Methanogenesis in subglacial sediments: Subglacial methanogenesis, Env. Microbiol. Rep., 2,
685–692, https://doi.org/10.1111/j.1758-2229.2010.00162.x, 2010.
Buizert, C., Baggenstos, D., Jiang, W., Purtschert, R., Petrenko, V. V., Lu, Z.-T., Müller, P., Kuhl, T., Lee, J., Severinghaus, J. P., and Brook, E. J.: Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica, P. Natl. Acad. Sci. USA, 111, 6876–6881, 2014.
Bunt, J.: Microbiology of Antarctic sea-ice: diatoms of Antarctic sea-ice as
agents of primary production, Nature, 199, 1255–1257, 1963.
Burkert, A., Douglas, T. A., Waldrop, M. P., and Mackelprang, R.: Changes in
the Active, Dead, and Dormant Microbial Community Structure across a
Pleistocene Permafrost Chronosequence, Appl. Environ. Microbiol., 85,
e02646-18, https://doi.org/10.1128/AEM.02646-18, 2019.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J.
A., and Holmes, S. P.: DADA2: High-resolution sample inference from Illumina
amplicon data, Nat. Methods, 13, 581–583, https://doi.org/10.1038/nmeth.3869, 2016.
Campen, R. K., Sowers, T., and Alley, R. B.: Evidence of microbial consortia
metabolizing within a low-latitude mountain glacier, Geology, 31, 231,
https://doi.org/10.1130/0091-7613(2003)031<0231:EOMCMW>2.0.CO;2, 2003.
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J. A., Smith, G., and Knight, R.:
Ultra-high-throughput microbial community analysis on the Illumina HiSeq and
MiSeq platforms, ISME J., 6, 1621–1624, 2012.
Cheng, S. M. and Foght, J. M.: Cultivation-independent and -dependent
characterization of Bacteria resident beneath John Evans Glacier:
Characterization of subglacial Bacterial communities, FEMS Microbiol. Ecol., 59, 318–330,
https://doi.org/10.1111/j.1574-6941.2006.00267.x, 2007.
Christner, B. C.: Incorporation of DNA and Protein Precursors into
Macromolecules by Bacteria at −15 ∘C, Appl. Environ. Microbiol., 68, 6435–6438,
https://doi.org/10.1128/AEM.68.12.6435-6438.2002, 2002.
Christner, B. C., Mikucki, J. A., Foreman, C. M., Denson, J., and Priscu, J.
C.: Glacial ice cores: A model system for developing extraterrestrial
decontamination protocols, Icarus, 174, 572–584,
https://doi.org/10.1016/j.icarus.2004.10.027, 2005.
Cuffey, K. M., Conway, H., Gades, A. M., Hallet, B., Lorrain, R.,
Severinghaus, J. P., Steig, E. J., Vaughn, B., and White, J. W. C.:
Entrainment at cold glacier beds, Geology, 28, 351–354, 2000.
Dieser, M., Broemsen, E. L. J. E., Cameron, K. A., King, G. M., Achberger,
A., Choquette, K., Hagedorn, B., Sletten, R., Junge, K., and Christner, B.
C.: Molecular and biogeochemical evidence for methane cycling beneath the
western margin of the Greenland Ice Sheet, ISME J., 8, 2305–2316,
https://doi.org/10.1038/ismej.2014.59, 2014.
Doyle, S. and Christner, B. C.: 16S rRNA sequence data from Taylor Glacier and Matanuska Glacier basal ice, NCBI SRA [data set], https://www.ncbi.nlm.nih.gov/bioproject/PRJNA282540, 28 April 2015.
Doyle, S., Dieser, M., Broemsen, E., and Christner, B.: General characteristics of cold-adapted microorganisms, in: Polar Microbiology: Life in a Deep Freeze, edited by: Miller, R. V. and Whyte, L. G., American Society of Microbiology, 103–125, https://doi.org/10.1128/9781555817183.ch5, 2012.
Doyle, S., Montross, S., Skidmore, M., and Christner, B.: Characterizing
Microbial Diversity and the Potential for Metabolic Function at −15 ∘C in the Basal Ice of Taylor Glacier, Antarctica, Biology, 2, 1034–1053,
https://doi.org/10.3390/biology2031034, 2013.
Eisenhofer, R., Minich, J. J., Marotz, C., Cooper, A., Knight, R., and
Weyrich, L. S.: Contamination in Low Microbial Biomass Microbiome Studies:
Issues and Recommendations, Trends in Microbiology, 27, 105–117,
https://doi.org/10.1016/j.tim.2018.11.003, 2019.
Ensign, J.: Formation, properties, and germination of actinomycete spores,
Annu. Rev. Microb., 32, 185–219,
https://doi.org/10.1146/annurev.mi.32.100178.001153, 1978.
Filippidou, S., Wunderlin, T., Junier, T., Jeanneret, N., Dorador, C., Molina, V., Johnson, D. R., and Junier, P.: A Combination of Extreme Environmental Conditions Favor the Prevalence of Endospore-Forming Firmicutes, Front. Microbiol., 7, 1707, https://doi.org/10.3389/fmicb.2016.01707, 2016.
Fraser, C. I., Connell, L., Lee, C. K., and Cary, S. C.: Evidence of plant
and animal communities at exposed and subglacial (cave) geothermal sites in
Antarctica, Polar Biol, 41, 417–421,
https://doi.org/10.1007/s00300-017-2198-9, 2018.
Goordial, J., Davila, A., Lacelle, D., Pollard, W., Marinova, M. M., Greer,
C. W., DiRuggiero, J., McKay, C. P., and Whyte, L. G.: Nearing the cold-arid
limits of microbial life in permafrost of an upper dry valley, Antarctica, ISME J.,
10, 1613–1624, https://doi.org/10.1038/ismej.2015.239, 2016.
Gow, A. J., Ueda, H. T., and Garfield, D. E.: Antarctic Ice Sheet:
Preliminary Results of First Core Hole to Bedrock, Science, 161, 1011–1013,
https://doi.org/10.1126/science.161.3845.1011, 1968.
Hawkings, J. R., Skidmore, M. L., Wadham, J. L., Priscu, J. C., Morton, P.
L., Hatton, J. E., Gardner, C. B., Kohler, T. J., Stibal, M., Bagshaw, E.
A., Steigmeyer, A., Barker, J., Dore, J. E., Lyons, W. B., Tranter, M.,
Spencer, R. G. M., and Team, the S. S.: Enhanced trace element mobilization
by Earth's ice sheets, P. Natl. Acad. Sci. USA, 117, 31648–31659,
https://doi.org/10.1073/pnas.2014378117, 2020.
Hood, E., Fellman, J., Spencer, R. G. M., Hernes, P. J., Edwards, R.,
D'Amore, D., and Scott, D.: Glaciers as a source of ancient and labile
organic matter to the marine environment, Nature, 462, 1044–1047,
https://doi.org/10.1038/nature08580, 2009.
Hopkins, N. R., Evenson, E. B., Bilardello, D., Alley, R. B., Berti, C., and
Kodama, K. P.: Magnetic anisotropy and debris-dependent rheological
heterogeneity within stratified basal ice, J. Glaciol., 65,
770–779, https://doi.org/10.1017/jog.2019.51, 2019.
Hopwood, M. J., Carroll, D., Dunse, T., Hodson, A., Holding, J. M., Iriarte, J. L., Ribeiro, S., Achterberg, E. P., Cantoni, C., Carlson, D. F., Chierici, M., Clarke, J. S., Cozzi, S., Fransson, A., Juul-Pedersen, T., Winding, M. H. S., and Meire, L.: Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?, The Cryosphere, 14, 1347–1383, https://doi.org/10.5194/tc-14-1347-2020, 2020.
Hubbard, B., Cook, S., and Coulson, H.: Basal ice facies: a review and
unifying approach, Quaternary Sci. Rev., 28, 1956–1969,
https://doi.org/10.1016/j.quascirev.2009.03.005, 2009.
Itcus, C., Pascu, M. D., Lavin, P., Perşoiu, A., Iancu, L., and Purcarea, C.: Bacterial and archaeal community structures in perennial cave ice, Sci. Rep.-UK, 8, 1–14, https://doi.org/10.1038/s41598-018-34106-2, 2018.
Janssen, S., McDonald, D., Gonzalez, A., Navas-Molina, J. A., Jiang, L., Xu,
Z. Z., Winker, K., Kado, D. M., Orwoll, E., Manary, M., Mirarab, S., and
Knight, R.: Phylogenetic Placement of Exact Amplicon Sequences Improves
Associations with Clinical Information, mSystems, 3, e00021-18,
https://doi.org/10.1128/mSystems.00021-18, 2018.
Jung, J., Yoo, K.-C., Rosenheim, B. E., Conway, T. M., Lee, J. I., Yoon, H.
I., Hwang, C. Y., Yang, K., Subt, C., and Kim, J.: Microbial Fe(III)
reduction as a potential iron source from Holocene sediments beneath Larsen
Ice Shelf, Nat. Commun., 10, 1–10,
https://doi.org/10.1038/s41467-019-13741-x, 2019.
Katayama, T., Tanaka, M., Moriizumi, J., Nakamura, T., Brouchkov, A.,
Douglas, T. A., Fukuda, M., Tomita, F., and Asano, K.: Phylogenetic Analysis
of Bacteria Preserved in a Permafrost Ice Wedge for 25,000 Years, Appl. Environ. Microbiol., 73,
2360–2363, https://doi.org/10.1128/AEM.01715-06, 2007.
Kimes, P. K., Liu, Y., Neil Hayes, D., and Marron, J. S.: Statistical
significance for hierarchical clustering, Biometrics, 73, 811–821,
https://doi.org/10.1111/biom.12647, 2017.
Knight, P. G.: The basal ice layer of glaciers and ice sheets, Quaternary
Sci. Rev., 16, 975–993,
https://doi.org/10.1016/S0277-3791(97)00033-4, 1997.
Kochkina, G., Ivanushkina, N., Karasev, S., Gavrish, E. Y., Gurina, L.,
Evtushenko, L., Spirina, E., Vorob'eva, E., Gilichinskii, D., and Ozerskaya,
S.: Survival of micromycetes and actinobacteria under conditions of
long-term natural cryopreservation, Microbiology, 70, 356–364, 2001.
Korza, G., Setlow, B., Rao, L., Li, Q., and Setlow, P.: Changes in Bacillus
Spore Small Molecules, rRNA, Germination, and Outgrowth after Extended
Sublethal Exposure to Various Temperatures: Evidence that Protein Synthesis
Is Not Essential for Spore Germination, J. Bacteriol., 198, 3254–3264,
https://doi.org/10.1128/JB.00583-16, 2016.
Lacelle, D., Radtke, K., Clark, I. D., Fisher, D., Lauriol, B., Utting, N.,
and Whyte, L. G.: Geomicrobiology and occluded O2–CO2–Ar gas analyses
provide evidence of microbial respiration in ancient terrestrial ground ice, Earth Planet. Sc. Lett.,
306, 46–54, https://doi.org/10.1016/j.epsl.2011.03.023, 2011.
Lamarche-Gagnon, G., Wadham, J. L., Sherwood Lollar, B., Arndt, S., Fietzek,
P., Beaton, A. D., Tedstone, A. J., Telling, J., Bagshaw, E. A., Hawkings,
J. R., Kohler, T. J., Zarsky, J. D., Mowlem, M. C., Anesio, A. M., and
Stibal, M.: Greenland melt drives continuous export of methane from the
ice-sheet bed, Nature, 565, 73–77, https://doi.org/10.1038/s41586-018-0800-0, 2019.
Laufer-Meiser, K., Michaud, A. B., Maisch, M., Byrne, J. M., Kappler, A.,
Patterson, M. O., Røy, H., and Jørgensen, B. B.: Potentially
bioavailable iron produced through benthic cycling in glaciated Arctic
fjords of Svalbard, Nat. Commun., 12, 1–13,
https://doi.org/10.1038/s41467-021-21558-w, 2021.
Lawson, D.: Sedimentological Analysis of the Western Terminus Region of the Matanuska Glacier, Alaska, CRREL Report 79-9, Cold Regions Research and Engineering Laboratory, 122 pp., https://hdl.handle.net/11681/9016, 1979.
Lawson, D. E. and Kulla, J. B.: An Oxygen Isotope Investigation of the
Origin of the Basal Zone of the Matanuska Glacier, Alaska, J.
Geol., 86, 673–685, https://doi.org/10.1086/649736, 1978.
Lawson, D. E., Strasser, J. C., Evenson, E. B., Alley, R. B., Larson, G. J.,
and Arcone, S. A.: Glaciohydraulic supercooling: a freeze-on mechanism to
create stratified, debris-rich basal ice: I. Field evidence, J. Glaciol., 44, 547–562,
https://doi.org/10.3189/S0022143000002069, 1998.
Lee, J. E., Edwards, J. S., Schmitt, J., Fischer, H., Bock, M., and Brook,
E. J.: Excess methane in Greenland ice cores associated with high dust
concentrations, Geochim. Cosmochim. Ac., 270, 409–430,
https://doi.org/10.1016/j.gca.2019.11.020, 2020.
McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z.,
Probst, A., Andersen, G. L., Knight, R., and Hugenholtz, P.: An improved
Greengenes taxonomy with explicit ranks for ecological and evolutionary
analyses of bacteria and archaea, ISME J., 6, 610–618, https://doi.org/10.1038/ismej.2011.139, 2012.
Michaud, A. B., Dore, J. E., Achberger, A. M., Christner, B. C., Mitchell,
A. C., Skidmore, M. L., Vick-Majors, T. J., and Priscu, J. C.: Microbial
oxidation as a methane sink beneath the West Antarctic Ice Sheet, Nat. Geosci., 10,
582–586, https://doi.org/10.1038/ngeo2992, 2017.
Mirarab, S., Nguyen, N., and Warnow, T.: SEPP: SATé-enabled phylogenetic placement, Pac. Symp. Biocomput., 2012, 247–258, https://doi.org/10.1142/9789814366496_0024, 2012.
Miteva, V., Rinehold, K., Sowers, T., Sebastian, A., and Brenchley, J.:
Abundance, viability and diversity of the indigenous microbial populations
at different depths of the NEEM Greenland ice core, Polar Res., 34, 25057,
https://doi.org/10.3402/polar.v34.25057, 2015.
Miteva, V., Sowers, T., Schüpbach, S., Fischer, H., and Brenchley, J.:
Geochemical and Microbiological Studies of Nitrous Oxide Variations within
the New NEEM Greenland Ice Core during the Last Glacial Period, Geomicrobiol. J., 33,
647–660, https://doi.org/10.1080/01490451.2015.1074321, 2016.
Monteux, S., Weedon, J. T., Blume-Werry, G., Gavazov, K., Jassey, V. E. J.,
Johansson, M., Keuper, F., Olid, C., and Dorrepaal, E.: Long-term in situ
permafrost thaw effects on bacterial communities and potential aerobic
respiration, ISME J., 12, 2129–2141, https://doi.org/10.1038/s41396-018-0176-z,
2018.
Montross, S., Skidmore, M., Christner, B., Samyn, D., Tison, J.-L., Lorrain,
R., Doyle, S., and Fitzsimons, S.: Debris-Rich Basal Ice as a Microbial
Habitat, Taylor Glacier, Antarctica, Geomicrobiol. J., 31, 76–81,
https://doi.org/10.1080/01490451.2013.811316, 2014.
Montross, S. N.: Biogeochemistry of basal ice from Taylor Glacier, Antarctica, PhD thesis, Montana State University, 134 pp., https://scholarworks.montana.edu/xmlui/handle/1/1895, 2012.
Montross, S. N., Skidmore, M., Tranter, M., Kivimaki, A.-L., and Parkes, R.
J.: A microbial driver of chemical weathering in glaciated systems, Geology, 41,
215–218, https://doi.org/10.1130/G33572.1, 2013.
Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., and Setlow, P.:
Resistance of Bacillus endospores to extreme terrestrial and
extraterrestrial environments, Microb. Molec. Biol. Rev.,
64, 548–572, https://doi.org/10.1128/MMBR.64.3.548-572.2000, 2000.
O'Connor, B. R. W., Fernández-Martínez, M. Á.,
Léveillé, R. J., and Whyte, L. G.: Taxonomic Characterization and
Microbial Activity Determination of Cold-Adapted Microbial Communities in
Lava Tube Ice Caves from Lava Beds National Monument, a High-Fidelity Mars
Analogue Environment, Astrobiology, 21, 613–627, https://doi.org/10.1089/ast.2020.2327,
2021.
Panikov, N. S., Flanagan, P. W., Oechel, W. C., Mastepanov, M. A., and
Christensen, T. R.: Microbial activity in soils frozen to below
−39 ∘C, Soil Biol. Biochem., 38, 785–794,
https://doi.org/10.1016/j.soilbio.2005.07.004, 2006.
Paterson, W. S. B.: Physics of glaciers, 3rd edition, Butterworth-Heinemann, ISBN 978-0-7506-4742-7, 1994.
Paun, V. I., Icaza, G., Lavin, P., Marin, C., Tudorache, A., Perşoiu,
A., Dorador, C., and Purcarea, C.: Total and Potentially Active Bacterial
Communities Entrapped in a Late Glacial Through Holocene Ice Core From
Scarisoara Ice Cave, Romania, Front. Microbiol., 10, 1193,
https://doi.org/10.3389/fmicb.2019.01193, 2019.
Perini, L., Gostinčar, C., and Gunde-Cimerman, N.: Fungal and bacterial
diversity of Svalbard subglacial ice, Sci. Rep.-UK, 9, 20230,
https://doi.org/10.1038/s41598-019-56290-5, 2019.
Perreault, N. N., Greer, C. W., Andersen, D. T., Tille, S.,
Lacrampe-Couloume, G., Lollar, B. S., and Whyte, L. G.: Heterotrophic and
Autotrophic Microbial Populations in Cold Perennial Springs of the High
Arctic, Appl. Environ. Microbiol., 74, 6898–6907,
https://doi.org/10.1128/AEM.00359-08, 2008.
Price, P. B.: A habitat for psychrophiles in deep Antarctic ice, P. Natl. Acad. Sci. USA, 97,
1247–1251, https://doi.org/10.1073/pnas.97.3.1247, 2000.
Price, P. B. and Sowers, T.: Temperature dependence of metabolic rates for
microbial growth, maintenance, and survival, P. Natl. Acad. Sci. USA, 101, 4631–4636,
https://doi.org/10.1073/pnas.0400522101, 2004.
Price, P. B., Morris, J., Bay, R. C., Adhikari, A., Giovannoni, S. J., and Vergin, K. L.: Molecular Fossils from Microorganisms Preserved in Glacial Ice, bioRxiv [preprint], https://doi.org/10.1101/019240, 13 May 2015.
Priscu, J. C., Tulaczyk, S., Studinger, M., Kennicutt, M., Christner, B. C., and Foreman, C. M.: Antarctic subglacial water: origin, evolution and ecology, in: Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems, edited by: Vincent, W. F., and Laybourn-Parry, J., Oxford University Press, Oxford, 119–135, https://doi.org/10.1093/acprof:oso/9780199213887.003.0007, 2008.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Peplies, J., and Glockner, F. O.: The SILVA ribosomal RNA gene database
project: improved data processing and web-based tools, Nucleic Acids Res., 41, D590–D596,
https://doi.org/10.1093/nar/gks1219, 2013.
Rhodes, R. H., Faïn, X., Stowasser, C., Blunier, T., Chappellaz, J.,
McConnell, J. R., Romanini, D., Mitchell, L. E., and Brook, E. J.:
Continuous methane measurements from a late Holocene Greenland ice core:
Atmospheric and in-situ signals, Earth Planet. Sc. Lett., 368,
9–19, https://doi.org/10.1016/j.epsl.2013.02.034, 2013.
Rignot, E. and Jacobs, S. S.: Rapid Bottom Melting Widespread near Antarctic
Ice Sheet Grounding Lines, Science, 296, 2020–2023,
https://doi.org/10.1126/science.1070942, 2002.
Salter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O.,
Moffatt, M. F., Turner, P., Parkhill, J., Loman, N. J., and Walker, A. W.:
Reagent and laboratory contamination can critically impact sequence-based
microbiome analyses, BMC Biol., 12, 87, https://doi.org/10.1186/s12915-014-0087-z, 2014.
Samyn, D., Svensson, A., and Fitzsimons, S. J.: Dynamic implications of discontinuous recrystallization in cold basal ice: Taylor Glacier, Antarctica, J. Geophys. Res., 113, F3, https://doi.org/10.1029/2006JF000600, 2008.
Segev, E., Smith, Y., and Ben-Yehuda, S.: RNA Dynamics in Aging Bacterial
Spores, Cell, 148, 139–149, https://doi.org/10.1016/j.cell.2011.11.059,
2012.
Segura, J. H., Nilsson, M. B., Haei, M., Sparrman, T., Mikkola, J.-P.,
Gräsvik, J., Schleucher, J., and Öquist, M. G.: Microbial
mineralization of cellulose in frozen soils, Nat. Commun., 8, 1154,
https://doi.org/10.1038/s41467-017-01230-y, 2017.
Sheridan, P. P., Miteva, V. I., and Brenchley, J. E.: Phylogenetic Analysis
of Anaerobic Psychrophilic Enrichment Cultures Obtained from a Greenland
Glacier Ice Core, Appl. Environ. Microbiol., 69, 2153–2160,
https://doi.org/10.1128/AEM.69.4.2153-2160.2003, 2003.
Siegert, M. J., Ellis-Evans, J. C., Tranter, M., Mayer, C., Petit, J.-R.,
Salamatin, A., and Priscu, J. C.: Physical, chemical and biological
processes in Lake Vostok and other Antarctic subglacial lakes, Nature, 414,
603–609, https://doi.org/10.1038/414603a, 2001.
Skidmore, M., Anderson, S. P., Sharp, M., Foght, J., and Lanoil, B. D.:
Comparison of Microbial Community Compositions of Two Subglacial
Environments Reveals a Possible Role for Microbes in Chemical Weathering
Processes, Appl. Environ. Microbiol. , 71, 6986–6997, https://doi.org/10.1128/AEM.71.11.6986-6997.2005,
2005.
Skidmore, M. L., Foght, J. M., and Sharp, M. J.: Microbial Life beneath a
High Arctic Glacier, Appl. Environ. Microbiol., 66, 3214–3220,
https://doi.org/10.1128/AEM.66.8.3214-3220.2000, 2000.
Sleewaegen, S., Samyn, D., Fitzsimons, S. J., and Lorrain, R. D.:
Equifinality of basal ice facies from an Antarctic cold-based glacier, Ann. Glaciol., 37,
257–262, https://doi.org/10.3189/172756403781815708, 2003.
Sonjak, S., Frisvad, J. C., and Gunde-Cimerman, N.: Penicillium Mycobiota in
Arctic Subglacial Ice, Microbial Ecol., 52, 207–216,
https://doi.org/10.1007/s00248-006-9086-0, 2006.
Souchez, R., Janssens, L., Lemmens, M., and Stauffer, B.: Very low oxygen
concentration in basal ice from Summit, central Greenland, Geophys. Res. Lett., 22, 2001–2004,
https://doi.org/10.1029/95GL01995, 1995.
Souchez, R., Bouzette, A., Clausen, H. B., Johnsen, S. J., and Jouzel, J.: A
stacked mixing sequence at the base of the Dye 3 Core, Greenland, Geophys. Res. Lett., 25,
1943–1946, https://doi.org/10.1029/98gl01411, 1998.
Souchez, R., Jouzel, J., Landais, A., Chappellaz, J., Lorrain, R., and
Tison, J.-L.: Gas isotopes in ice reveal a vegetated central Greenland
during ice sheet invasion, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL028424, 2006.
Sowers, T.: N2O record spanning the penultimate deglaciation from the Vostok
ice core, J. Geophys. Res.-Atmos., 106, 31903–31914, https://doi.org/10.1029/2000jd900707, 2001.
Spirina, E., Durdenko, E., Demidov, N., Abramov, A., Romanovsky, V., and
Rivkina, E.: Halophilic-psychrotrophic bacteria of an Alaskan cryopeg – a
model for astrobiology, Paleontol. J., 51, 1440–1452, 2017.
Steven, B., Briggs, G., McKay, C. P., Pollard, W. H., Greer, C. W., and
Whyte, L. G.: Characterization of the microbial diversity in a permafrost
sample from the Canadian high Arctic using culture-dependent and
culture-independent methods: Microbial diversity in Canadian high Arctic
permafrost, FEMS Microbiol. Ecol., 59, 513–523, https://doi.org/10.1111/j.1574-6941.2006.00247.x,
2007.
Steven, B., Pollard, W. H., Greer, C. W., and Whyte, L. G.: Microbial
diversity and activity through a permafrost/ground ice core profile from the
Canadian high Arctic, Environ. Microbiol., 10, 3388–3403,
https://doi.org/10.1111/j.1462-2920.2008.01746.x, 2008.
Stibal, M., Wadham, J. L., Lis, G. P., Telling, J., Pancost, R. D., Dubnick,
A., Sharp, M. J., Lawson, E. C., Butler, C. E. H., Hasan, F., Tranter, M.,
and Anesio, A. M.: Methanogenic potential of Arctic and Antarctic subglacial
environments with contrasting organic carbon sources, Glob. Change Biol., 18, 3332–3345,
https://doi.org/10.1111/j.1365-2486.2012.02763.x, 2012.
Strasser, J. C., Lawson, D. E., Larson, G. J., Evenson, E. B., and Alley, R.
B.: Preliminary results of tritium analyses in basal ice, Matanuska Glacier,
Alaska, U.S.A.: evidence for subglacial ice accretion, Ann. Glaciol., 22, 126–133,
https://doi.org/10.3189/1996AoG22-1-126-133, 1996.
Tung, H. C., Price, P. B., Bramall, N. E., and Vrdoljak, G.: Microorganisms
Metabolizing on Clay Grains in 3-Km-Deep Greenland Basal Ice, Astrobiology,
6, 69–86, https://doi.org/10.1089/ast.2006.6.69, 2006.
Tuorto, S. J., Darias, P., McGuinness, L. R., Panikov, N., Zhang, T.,
Häggblom, M. M., and Kerkhof, L. J.: Bacterial genome replication at
subzero temperatures in permafrost, ISME J., 8, 139–149,
https://doi.org/10.1038/ismej.2013.140, 2014.
Vick-Majors, T. J., Michaud, A. B., Skidmore, M. L., Turetta, C., Barbante,
C., Christner, B. C., Dore, J. E., Christianson, K., Mitchell, A. C.,
Achberger, A. M., Mikucki, J. A., and Priscu, J. C.: Biogeochemical
Connectivity Between Freshwater Ecosystems beneath the West Antarctic Ice
Sheet and the Sub-Ice Marine Environment, Global Biogeochem. Cy., 34, e2019GB006446,
https://doi.org/10.1029/2019GB006446, 2020.
Wadham, J. L., Bottrell, S., Tranter, M., and Raiswell, R.: Stable isotope
evidence for microbial sulphate reduction at the bed of a polythermal high
Arctic glacier, Earth Planet. Sc. Lett., 219, 341–355,
https://doi.org/10.1016/S0012-821X(03)00683-6, 2004.
Wadham, J. L., Tranter, M., Tulaczyk, S., and Sharp, M.: Subglacial
methanogenesis: A potential climatic amplifier?, Global Biogeochem. Cy., 22, GB2021,
https://doi.org/10.1029/2007GB002951, 2008.
Wadham, J. L., Tranter, M., Skidmore, M., Hodson, A. J., Priscu, J., Lyons,
W. B., Sharp, M., Wynn, P., and Jackson, M.: Biogeochemical weathering under
ice: Size matters, Global Biogeochem. Cy., 24, GB3025, https://doi.org/10.1029/2009GB003688, 2010.
Wadham, J. L., Arndt, S., Tulaczyk, S., Stibal, M., Tranter, M., Telling,
J., Lis, G. P., Lawson, E., Ridgwell, A., Dubnick, A., Sharp, M. J., Anesio,
A. M., and Butler, C. E. H.: Potential methane reservoirs beneath
Antarctica, Nature, 488, 633–637, https://doi.org/10.1038/nature11374, 2012.
Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R.: Naïve
Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New
Bacterial Taxonomy, Appl. Environ. Microbiol., 73, 5261–5267,
https://doi.org/10.1128/AEM.00062-07, 2007.
Willerslev, E., Cappellini, E., Boomsma, W., Nielsen, R., Hebsgaard, M. B.,
Brand, T. B., Hofreiter, M., Bunce, M., Poinar, H. N., Dahl-Jensen, D.,
Johnsen, S., Steffensen, J. P., Bennike, O., Schwenninger, J.-L., Nathan,
R., Armitage, S., de Hoog, C.-J., Alfimov, V., Christl, M., Beer, J.,
Muscheler, R., Barker, J., Sharp, M., Penkman, K. E. H., Haile, J.,
Taberlet, P., Gilbert, M. T. P., Casoli, A., Campani, E., and Collins, M.
J.: Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern
Greenland, Science, 317, 111–114, https://doi.org/10.1126/science.1141758, 2007.
Yde, J. C., Finster, K. W., Raiswell, R., Steffensen, J. P., Heinemeier, J.,
Olsen, J., Gunnlaugsson, H. P., and Nielsen, O. B.: Basal ice microbiology
at the margin of the Greenland ice sheet, Ann. Glaciol., 51, 71–79,
https://doi.org/10.3189/172756411795931976, 2010.
Zhong, Z.-P., Tian, F., Roux, S., Gazitúa, M. C., Solonenko, N. E., Li,
Y.-F., Davis, M. E., Van Etten, J. L., Mosley-Thompson, E., Rich, V. I.,
Sullivan, M. B., and Thompson, L. G.: Glacier ice archives nearly
15,000-year-old microbes and phages, Microbiome, 9, 160,
https://doi.org/10.1186/s40168-021-01106-w, 2021.
Short summary
Here we examine the diversity and activity of microbes inhabiting different types of basal ice. We combine this with a meta-analysis to provide a broad overview of the specific microbial lineages enriched in a diverse range of frozen environments. Our results indicate debris-rich basal ice horizons harbor microbes that actively conduct biogeochemical cycling at subzero temperatures and reveal similarities between the microbiomes of basal ice and other permanently frozen environments.
Here we examine the diversity and activity of microbes inhabiting different types of basal ice....