Articles | Volume 16, issue 6
https://doi.org/10.5194/tc-16-2629-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-2629-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Empirical correction of systematic orthorectification error in Sentinel-2 velocity fields for Greenlandic outlet glaciers
Byrd Polar and Climate Research Center, Ohio State University,
Columbus, OH, USA
Ian M. Howat
Byrd Polar and Climate Research Center, Ohio State University,
Columbus, OH, USA
School of Earth Sciences, Ohio State University, Columbus, OH, USA
Bidhyananda Yadav
Byrd Polar and Climate Research Center, Ohio State University,
Columbus, OH, USA
Myoung-Jong Noh
Byrd Polar and Climate Research Center, Ohio State University,
Columbus, OH, USA
Related authors
Sjur Barndon, Robert Law, Andreas Born, Thomas Chudley, and Stefanie Brechtelsbauer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1304, https://doi.org/10.5194/egusphere-2025-1304, 2025
Short summary
Short summary
By simulating a section of the Scandinavian Ice Sheet over a deep fjord, we aim to understand the behaviour of ice sheets over rough landscapes. For perpendicular flow, we find reduced speed within the fjord and reverse flow at its base. Comparing real and smoothed topography shows that low-resolution models fail to capture these effects. Our findings have implications for Greenland ice sheet models, as commonly used bedrock resolutions likely overlook the influence of similar rough landscapes.
Shfaqat A. Khan, Helene Seroussi, Mathieu Morlighem, William Colgan, Veit Helm, Gong Cheng, Danjal Berg, Valentina R. Barletta, Nicolaj K. Larsen, William Kochtitzky, Michiel van den Broeke, Kurt H. Kjær, Andy Aschwanden, Brice Noël, Jason E. Box, Joseph A. MacGregor, Robert S. Fausto, Kenneth D. Mankoff, Ian M. Howat, Kuba Oniszk, Dominik Fahrner, Anja Løkkegaard, Eigil Y. H. Lippert, Alicia Bråtner, and Javed Hassan
Earth Syst. Sci. Data, 17, 3047–3071, https://doi.org/10.5194/essd-17-3047-2025, https://doi.org/10.5194/essd-17-3047-2025, 2025
Short summary
Short summary
The surface elevation of the Greenland Ice Sheet is changing due to surface mass balance processes and ice dynamics, each exhibiting distinct spatiotemporal patterns. Here, we employ satellite and airborne altimetry data with fine spatial (1 km) and temporal (monthly) resolutions to document this spatiotemporal evolution from 2003 to 2023. This dataset of fine-resolution altimetry data in both space and time will support studies of ice mass loss and be useful for GIS ice sheet modeling.
Sjur Barndon, Robert Law, Andreas Born, Thomas Chudley, and Stefanie Brechtelsbauer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1304, https://doi.org/10.5194/egusphere-2025-1304, 2025
Short summary
Short summary
By simulating a section of the Scandinavian Ice Sheet over a deep fjord, we aim to understand the behaviour of ice sheets over rough landscapes. For perpendicular flow, we find reduced speed within the fjord and reverse flow at its base. Comparing real and smoothed topography shows that low-resolution models fail to capture these effects. Our findings have implications for Greenland ice sheet models, as commonly used bedrock resolutions likely overlook the influence of similar rough landscapes.
Tal Y. Shutkin, Bryan G. Mark, Nathan D. Stansell, Rolando Cruz Encarnación, Henry H. Brecher, Zhengyu Liu, Bidhyananda Yadav, and Forrest S. Schoessow
EGUsphere, https://doi.org/10.5194/egusphere-2024-3194, https://doi.org/10.5194/egusphere-2024-3194, 2025
Short summary
Short summary
Queshque Glacier, a tropical glacier located in central Peru, has lost about 22.5 million cubic meters of water since 2008. Despite a possible increase in recent snowfall, our research shows that ice loss has been caused by steadily warming temperatures. We also see that the formation of a new lake at the base of the glacier has sped up Queshque’s rate of retreat. We find that changes in glacier water storage are increasingly related to conditions in the Pacific Ocean during the austral summer.
Trevor R. Hillebrand, Matthew J. Hoffman, Mauro Perego, Stephen F. Price, and Ian M. Howat
The Cryosphere, 16, 4679–4700, https://doi.org/10.5194/tc-16-4679-2022, https://doi.org/10.5194/tc-16-4679-2022, 2022
Short summary
Short summary
We estimate that Humboldt Glacier, northern Greenland, will contribute 5.2–8.7 mm to global sea level in 2007–2100, using an ensemble of model simulations constrained by observations of glacier retreat and speedup. This is a significant fraction of the 40–140 mm from the whole Greenland Ice Sheet predicted by the recent ISMIP6 multi-model ensemble, suggesting that calibrating models against observed velocity changes could result in higher estimates of 21st century sea-level rise from Greenland.
Cited articles
Altena, B. and Kääb, A.: Elevation Change and Improved Velocity
Retrieval Using Orthorectified Optical Satellite Data from Different Orbits,
Remote Sens., 9, 300, https://doi.org/10.3390/rs9030300, 2017.
Altena, B., Haga, O. N., Nuth, C., and Kääb, A.: MONITORING SUB-WEEKLY EVOLUTION OF SURFACE VELOCITY AND ELEVATION FOR A HIGH-LATITUDE SURGING GLACIER USING SENTINEL-2, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W13, 1723–1727, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1723-2019, 2019.
Chudley, T. R., Howat, I. M., Yadav, B. N., and Noh, M. J.: Data supporting “Empirical correction of systematic orthorectification error in Sentinel-2 velocity fields for Greenlandic outlet glaciers”, Zenodo [dataset], https://doi.org/10.5281/zenodo.6676196, 2022.
de Ferranti, J.: Viewfinder Panoramas 3” DEM,
http://www.viewfinderpanoramas.org/dem3.html (last access: 22 February 2022), 2014.
Dehecq, A., Gourmelen, N., Gardner, A. S., Brun, F., Goldberg, D., Nienow,
P. W., Berthier, E., Vincent, C., Wagnon, P., and Trouvé, E.:
Twenty-first century glacier slowdown driven by mass loss in High Mountain
Asia, Nat. Geosci., 12, 22–27, https://doi.org/10.1038/s41561-018-0271-9,
2019.
European Space Agency: Copernicus GLO-90 Digital Surface Model,
OpenTopography, https://doi.org/10.5069/G9028PQB, 2021.
Franks, S., Storey, J., and Rengarajan, R.: The New Landsat Collection-2 Digital Elevation Model, Remote Sens., 12, 3909, https://doi.org/10.3390/rs12233909, 2020.
Friedl, P., Seehaus, T., and Braun, M.: Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data, Earth Syst. Sci. Data, 13, 4653–4675, https://doi.org/10.5194/essd-13-4653-2021, 2021.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Gardner, A. S., Fahnestock, M. A., and Scambos, T. A.: MEaSUREs ITS_LIVE Landsat Image-Pair Glacier and Ice Sheet Surface Velocities: Version 1, https://doi.org/10.5067/IMR9D3PEI28U, 2022.
Howat, I.: MEaSUREs Greenland Ice Mapping Project (GIMP) Land Ice and Ocean Classification Mask, Version 1. National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/B8X58MQBFUPA, 2017.
Howat, I.: MEaSURES Greenland Ice Velocity: Selected Glacier Site Velocity
Maps from Optical Imagery, Version 3, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/RRFY5IW94X5W,
2020.
Howat, I., Negrete, A., and Smith, B.: MEaSUREs Greenland Ice Mapping
Project (GIMP) Digital Elevation Model from GeoEye and WorldView Imagery,
Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/H0KUYVF53Q8M, 2017.
Howat, I. M., Negrete, A., and Smith, B. E.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, The Cryosphere, 8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014, 2014.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:
Accelerated global glacier mass loss in the early twenty-first century, Nature, 592,
726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021.
Joughin, I.: MEaSUREs Greenland 6 and 12 day Ice Sheet Velocity Mosaics from
SAR, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/6JKYGMOZQFYJ, 2021a.
Joughin, I.: MEaSUREs Greenland Ice Velocity Annual Mosaics from SAR and
Landsat, Version 3, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/C2GFA20CXUI4, 2021b.
Joughin, I., Smith, B. E., and Howat, I.: Greenland Ice Mapping Project: ice flow velocity variation at sub-monthly to decadal timescales, The Cryosphere, 12, 2211–2227, https://doi.org/10.5194/tc-12-2211-2018, 2018.
Kääb, A., Winsvold, S. H., Altena, B., Nuth, C., Nagler, T., and
Wuite, J.: Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and
Geometric Performance, and Application to Ice Velocity, Remote Sens., 8, 598,
https://doi.org/10.3390/rs8070598, 2016.
King, M. D., Howat, I. M., Jeong, S., Noh, M. J., Wouters, B., Noël, B., and van den Broeke, M. R.: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet, The Cryosphere, 12, 3813–3825, https://doi.org/10.5194/tc-12-3813-2018, 2018.
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël,
B. P. Y., van den Broeke, M. R., Wouters, B., and Negrete, A.: Dynamic ice
loss from the Greenland Ice Sheet driven by sustained glacier retreat,
Commun. Earth Environ., 1, 1–7, https://doi.org/10.1038/s43247-020-0001-2,
2020.
Mankoff, K. D., Colgan, W., Solgaard, A., Karlsson, N. B., Ahlstrøm, A. P., van As, D., Box, J. E., Khan, S. A., Kjeldsen, K. K., Mouginot, J., and Fausto, R. S.: Greenland Ice Sheet solid ice discharge from 1986 through 2017, Earth Syst. Sci. Data, 11, 769–786, https://doi.org/10.5194/essd-11-769-2019, 2019.
Moon, T., Joughin, I., Smith, B., van den Broeke, M. R., van de Berg, W. J.,
Noël, B., and Usher, M.: Distinct patterns of seasonal Greenland glacier
velocity, Geophys. Res. Lett., 41, 7209–7216,
https://doi.org/10.1002/2014GL061836, 2014.
Morlighem, M., Bondzio, J., Seroussi, H., Rignot, E., Larour, E., Humbert,
A., and Rebuffi, S.: Modeling of Store Gletscher's calving dynamics, West
Greenland, in response to ocean thermal forcing, Geophys. Res. Lett., 43,
2659–2666, https://doi.org/10.1002/2016GL067695, 2016.
Nagy, T., Andreassen, L. M., Duller, R. A., and Gonzalez, P. J.: SenDiT: The
Sentinel-2 Displacement Toolbox with Application to Glacier Surface
Velocities, Remote Sens., 11, 1151, https://doi.org/10.3390/rs11101151, 2019.
Noh, M.-J. and Howat, I. M.: Applications of High-Resolution, Cross-Track,
Pushbroom Satellite Images With the SETSM Algorithm, IEEE J. Sel. Top. Appl.,
12, 3885–3899, https://doi.org/10.1109/JSTARS.2019.2938146, 2019.
Paul, F., Piermattei, L., Treichler, D., Gilbert, L., Girod, L., Kääb, A., Libert, L., Nagler, T., Strozzi, T., and Wuite, J.: Three different glacier surges at a spot: what satellites observe and what not, The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022, 2022.
Poinar, K. and Andrews, L. C.: Challenges in predicting Greenland supraglacial lake drainages at the regional scale, The Cryosphere, 15, 1455–1483, https://doi.org/10.5194/tc-15-1455-2021, 2021.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K.,
Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C.,
Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington,
M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P.,
Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.:
ArcticDEM, Harvard Dataverse, https://doi.org/10.7910/DVN/OHHUKH, 2018.
Ressl, C. and Pfeifer, N.: Evaluation of the elevation model influence on
the orthorectification of Sentinel-2 satellite images over Austria, Eur. J.
Remote Sens., 51, 693–709, https://doi.org/10.1080/22797254.2018.1478676,
2018.
Rosenau, R., Scheinert, M., and Dietrich, R.: A processing system to monitor
Greenland outlet glacier velocity variations at decadal and seasonal time
scales utilizing the Landsat imagery, Remote Sens. Environ., 169,
1–19, https://doi.org/10.1016/j.rse.2015.07.012, 2015.
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo,
F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K.,
Markus, T., Neumann, T., Siegfried, M. R., and Zwally, H. J.: Pervasive ice
sheet mass loss reflects competing ocean and atmosphere processes, Science, 368,
1239–1242, https://doi.org/10.1126/science.aaz5845, 2020.
Solgaard, A., Kusk, A., Merryman Boncori, J. P., Dall, J., Mankoff, K. D., Ahlstrøm, A. P., Andersen, S. B., Citterio, M., Karlsson, N. B., Kjeldsen, K. K., Korsgaard, N. J., Larsen, S. H., and Fausto, R. S.: Greenland ice velocity maps from the PROMICE project, Earth Syst. Sci. Data, 13, 3491–3512, https://doi.org/10.5194/essd-13-3491-2021, 2021.
Vijay, S., King, M. D., Howat, I. M., Solgaard, A. M., Khan, S. A., and
Noël, B.: Greenland ice-sheet wide glacier classification based on two
distinct seasonal ice velocity behaviors, J. Glaciol., 67, 1241–1248,
https://doi.org/10.1017/jog.2021.89, 2021.
Williams, C. K. and Rasmussen, C. E.: Gaussian processes for machine learning, Cambridge, MA, MIT press, 2, p. 4, 2006.
Short summary
Sentinel-2 images are subject to distortion due to orthorectification error, which makes it difficult to extract reliable glacier velocity fields from images from different orbits. Here, we use a complete record of velocity fields at four Greenlandic outlet glaciers to empirically estimate the systematic error, allowing us to correct cross-track glacier velocity fields to a comparable accuracy to other medium-resolution satellite datasets.
Sentinel-2 images are subject to distortion due to orthorectification error, which makes it...