Burger, R., Potgieter, M., and Heber, B.: Rigidity dependence of cosmic ray proton latitudinal gradients measured by the Ulysses spacecraft: Implications for the diffusion tensor, J. Geophys. Res.-Space, 105, 27447–27455,
https://doi.org/10.1029/2000JA000153, 2000.
a
Desilets, D. and Zreda, M.: Footprint diameter for a cosmic-ray soil moisture probe: Theory and Monte Carlo simulations, Water Resour. Res., 49, 3566–3575,
https://doi.org/10.1002/wrcr.20187, 2013.
a
Desilets, D., Zreda, M., and Ferré, T. P. A.: Nature's neutron probe: Land surface hydrology at an elusive scale with cosmic rays, Water Resour. Res., 46, W11505,
https://doi.org/10.1029/2009WR008726, 2010.
a
Eroshenko, E., Velinov, P., Belov, A., Yanke, V., Pletnikov, E., Tassev, Y., and Mishev, A.: Relationships between cosmic ray neutron flux and rain flows, in: Proceedings of the 21st European Cosmic Ray Symposium, September 2008, Košice, Slovakia, 127–131, 2008. a
Evans, J. G., Ward, H. C., Blake, J. R., Hewitt, E. J., Morrison, R., Fry, M., Ball, L. A., Doughty, L. C., Libre, J. W., Hitt, O. E., Rylett, D., Ellis, R. J., Warwick, A. C., Brooks, M., Parkes, M. A., Wright, G. M. H., Singer, A. C., Boorman, D. B., and Jenkins, A.: Soil water content in southern England derived from a cosmic-ray soil moisture observing system – COSMOS-UK, Hydrol. Process., 30, 4987–4999,
https://doi.org/10.1002/hyp.10929, 2016.
a
Franz, T. E., Zreda, M., Rosolem, R., and Ferre, T. P. A.: A universal calibration function for determination of soil moisture with cosmic-ray neutrons, Hydrol. Earth Syst. Sci., 17, 453–460,
https://doi.org/10.5194/hess-17-453-2013, 2013.
a
Geant4 Collaboration: Guide for physics lists, release 10.4, available at:
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/BackupVersions/V10.4/html/index.html (last access: 7 October 2021), 2017. a
Gockel, A.: Messungen der durchdringenden Strahlung bei Ballonfahrten, Phys. Z., 12, 595–597, 1911. a
Hess,V.: über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten, Phys. Z., 13, 1084–1091, 1912. a
Hubert, G., Pazianotto, M. T., and Federico, C. A.: Modeling of ground albedo neutrons to investigate seasonal cosmic ray-induced neutron variations measured at high-altitude stations, J. Geophys. Res.-Space, 121, 12186–12201,
https://doi.org/10.1002/2016JA023055, 2016.
a
Hürkamp, K., Zentner, N., Reckerth, A., Weishaupt, S., Wetzel, K. F., Tschiersch, J., and Stumpp, C.: Spatial and temporal variability of snow isotopic composition on Mt. Zugspitze, Bavarian Alps, Germany, J. Hydrol. Hydromech., 67, 49–58,
https://doi.org/10.2478/johh-2018-0019, 2019.
a
Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S.: Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons, Water Resour. Res., 51, 5772–5790,
https://doi.org/10.1002/2015WR017169, 2015.
a
Köhli, M., Weimar, J., Schrön, M., Baatz, R., and Schmidt. U.: Soil Moisture and Air Humidity Dependence of the Above-Ground Cosmic-Ray Neutron Intensity, Front. Water, 2, 544847,
https://doi.org/10.3389/frwa.2020.544847, 2021.
a
Leuthold, G., Mares, V., Rühm, W., Weitzenegger, E., and Paretzke, H.: Long-term measurements of cosmic ray neutrons by means of a Bonner spectrometer at mountain altitudes – first results, Rad. Prot. Dosim., 126, 506–511,
https://doi.org/10.5194/tc-2021-152, 2007.
a
Mares, V. and Schraube, H.: High energy neutron spectrometry with Bonner spheres, in: Proceedings, the IRPA Regional Symposium on Radiation Protection in Neighbouring Countries of Central Europe, September 1997, Prague, Czech Republic, 543–547, 1998.
a,
b,
c
Mares, V., Schraube, G., and Schraube, H.: Calculated neutron response of a Bonner sphere spectrometer with
3He counter, Nucl. Instrum. Meth. A, 307, 398–412,
https://doi.org/10.1016/0168-9002(91)90210-H, 1991.
a
Mares, V., Brall, T., Bütikofer, R., and Rühm, W.: Influence of environmental parameters on secondary cosmic ray neutrons at high-altitude research stations at Jungfraujoch, Switzerland, and Zugspitze, Germany, Rad. Phys. Chem., 168, 108557,
https://doi.org/10.1016/j.radphyschem.2019.108557, 2020.
a
Mitrofanov, I. G., Litvak, M. L., Kozyrev, A. S., Sanin, A. B., Tret'yakov, V. I., Grin'kov, V. Y., Boynton, W. V., Shinohara, C., Hamara, D., and Saunders, R. S.: Soil Water Content on Mars as Estimated from Neutron Measurements by the HEND Instrument Onboard the 2001 Mars Odyssey Spacecraft, Solar Syst. Re., 38, 253–265,
https://doi.org/10.1023/B:SOLS.0000037461.70809.45, 2004.
a
Rühm, W., Mares, V., Pioch, C., Weitzenegger, E., and Paretzke, H.: Continuous measurements of secondary neutrons from cosmic radiation at low atmospheric and low geomagnetic shielding by means of Bonner Sphere Spectrometers, in: Proceedings of the 21st European Cosmic Ray Symposium, ECRS XXI, Košice, Slovakia, 2008. a
Rühm, W., Mares, V., Pioch, C., Weitzenegger, E., Vockenroth, R., and Paretzke, H. G.: Measurements of secondary neutrons from cosmic radiation with a Bonner sphere spectrometer at 79
∘ N, Radiat. Environ. Biophys., 48, 125–133, https://doi.org/10.1007/s00411-009-0219-y, 2009.
Rühm, W., Ackermann, U., Pioch, C., and Mares, V.: Spectral neutron flux oscillations of cosmic radiation on the Earth's surface, G. Geophys. Res., 117, A08309,
https://doi.org/10.1029/2012JA017524, 2012.
a,
b,
c,
d,
e,
f
Sato, T. and Niitab, K.: Analytical Functions to Predict Cosmic-Ray Neutron Spectra in the Atmosphere, Radiat. Res., 166, 544–555,
https://doi.org/10.1667/RR0610.1, 2006.
a,
b
Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S., Kai, T., Tsai, P., Matsuda, N., Iwase, H., Shigyo, N., Sihver, L., and Niita, K.: Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02, J. Nucl. Sci. Technol., 55, 684–690,
https://doi.org/10.1080/00223131.2017.1419890, 2018.
a
Schattan, P., Baroni, G., Oswald, S. E., Schober, J., Fey, C., Kormann, C., Huttenlau, M., and Achleitner, S.: Continuous monitoring of snowpack dynamics in alpine terrain by aboveground neutron sensing, Water Resour. Res., 53, 3615–3634,
https://doi.org/10.1002/2016WR020234, 2017.
a
Schattan, P., Köhli, M., Schrön, M., Baroni, G., and Oswald, S. E.: Sensing area-average snow water equivalent with cosmic-ray neutrons: The influence of fractional snow cover, Water Resour. Res., 55, 10796–10812,
https://doi.org/10.1029/2019WR025647, 2019.
a
Schraube, H., Jakes, J., Sannikov, A. V., Weitzenegger, E., Roesler, S., and Heinrich, W.: The Cosmic Ray Induced Neutron Spectrum at the Summit of the Zugspitze (2963 m), Radiat. Prot. Dosim., 70, 405–408, 1997.
a,
b
Schrön, M., Rosolem, R., Köhli, M., Piussi, L., Schröter, I., Iwema, J., Kögler, S., Oswald, S. E., Wollschläger, U., Samaniego, L., Dietrich, P., and Zacharias, S.: Cosmic-ray neutron rover surveys of field soil moisture and the influence of roads, Water Resour. Res., 54, 6441–6459,
https://doi.org/10.1029/2017WR021719, 2018.
a
Simpson, J. A., Fonger, W., and Treiman, S. B.: Cosmic Radiation Intensity-Time Variations and Their Origin. I. Neutron Intensity Variation Method and Meteorological Factors, Phys. Rev., 90, 934–950,
https://doi.org/10.1103/physrev.90.934, 1953.
a
Usoskin, I. G., Alanko-Huotari, K., Kovaltsov, G. A., and Mursula, K.: Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004, J. Geophys. Res.-Space, 110, A12108,
https://doi.org/10.1029/2005JA011250, 2005.
a
Wulf, T.: Über den Ursprung der in der Atmosphäre vorhandenen
γ-Strahlung, Phys. Z., 10, 997–1003, 1909. a
Wulf, T.: Beobachtungen über Strahlung hoher Durchdringungsfähigkeit auf dem Eiffelturm, Phys. Z., 11, 811–813, 1910. a
Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079–4099,
https://doi.org/10.5194/hess-16-4079-2012, 2012.
a,
b