Articles | Volume 15, issue 1
https://doi.org/10.5194/tc-15-459-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-459-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity of the Antarctic ice sheets to the warming of marine isotope substage 11c
Martim Mas e Braga
CORRESPONDING AUTHOR
Geomorphology and Glaciology, Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Jorge Bernales
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Matthias Prange
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Arjen P. Stroeven
Geomorphology and Glaciology, Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Irina Rogozhina
Department of Geography, Norwegian University of Science and Technology, Trondheim, Norway
Related authors
Yue Li, Gang Tang, Eleanor O’Rourke, Samar Minallah, Martim Mas e Braga, Sophie Nowicki, Robin S. Smith, David M. Lawrence, George C. Hurtt, Daniele Peano, Gesa Meyer, Birgit Hassler, Jiafu Mao, Yongkang Xue, and Martin Juckes
EGUsphere, https://doi.org/10.5194/egusphere-2025-3207, https://doi.org/10.5194/egusphere-2025-3207, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Land and Land Ice Theme Opportunities describe a list that contains 25 variable groups with 716 variables, which are potentially available to the broad scientific audience for performing analysis in land-atmosphere coupling, hydrological processes and freshwater systems, glacier and ice sheet mass balance and their influence on the sea levels, land use, and plant phenology.
Donald Alexander Slater, Eleanor Johnstone, Martim Mas e Braga, Neil Fraser, Tom Cowton, and Mark Inall
EGUsphere, https://doi.org/10.5194/egusphere-2024-3934, https://doi.org/10.5194/egusphere-2024-3934, 2025
Short summary
Short summary
Glacial fjords connect ice sheets to the ocean, controlling heat delivery to glaciers, which impacts ice sheet melt, and freshwater discharge to the ocean, affecting ocean circulation. However, their dynamics are not captured in large-scale climate models. We designed a simplified, computationally efficient model – FjordRPM – which accurately captures key fjord processes. It has direct applications for improving projections of ice melt, ocean circulation and sea-level rise.
Martim Mas e Braga, Richard Selwyn Jones, Jennifer C. H. Newall, Irina Rogozhina, Jane L. Andersen, Nathaniel A. Lifton, and Arjen P. Stroeven
The Cryosphere, 15, 4929–4947, https://doi.org/10.5194/tc-15-4929-2021, https://doi.org/10.5194/tc-15-4929-2021, 2021
Short summary
Short summary
Mountains higher than the ice surface are sampled to know when the ice reached the sampled elevation, which can be used to guide numerical models. This is important to understand how much ice will be lost by ice sheets in the future. We use a simple model to understand how ice flow around mountains affects the ice surface topography and show how much this influences results from field samples. We also show that models need a finer resolution over mountainous areas to better match field samples.
Yue Li, Gang Tang, Eleanor O’Rourke, Samar Minallah, Martim Mas e Braga, Sophie Nowicki, Robin S. Smith, David M. Lawrence, George C. Hurtt, Daniele Peano, Gesa Meyer, Birgit Hassler, Jiafu Mao, Yongkang Xue, and Martin Juckes
EGUsphere, https://doi.org/10.5194/egusphere-2025-3207, https://doi.org/10.5194/egusphere-2025-3207, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Land and Land Ice Theme Opportunities describe a list that contains 25 variable groups with 716 variables, which are potentially available to the broad scientific audience for performing analysis in land-atmosphere coupling, hydrological processes and freshwater systems, glacier and ice sheet mass balance and their influence on the sea levels, land use, and plant phenology.
Karlijn Ploeg and Arjen P. Stroeven
The Cryosphere, 19, 347–373, https://doi.org/10.5194/tc-19-347-2025, https://doi.org/10.5194/tc-19-347-2025, 2025
Short summary
Short summary
Mapping of glacial landforms using lidar data shows that the retreating margin of the Fennoscandian Ice Sheet dammed a series of lakes in the Torneträsk Basin during deglaciation. These lakes were more extensive than previously thought and produced outburst floods. We show that sections of the Pärvie Fault, the longest glacially activated fault of Sweden, ruptured multiple times and during the existence of ice-dammed lake Torneträsk.
Donald Alexander Slater, Eleanor Johnstone, Martim Mas e Braga, Neil Fraser, Tom Cowton, and Mark Inall
EGUsphere, https://doi.org/10.5194/egusphere-2024-3934, https://doi.org/10.5194/egusphere-2024-3934, 2025
Short summary
Short summary
Glacial fjords connect ice sheets to the ocean, controlling heat delivery to glaciers, which impacts ice sheet melt, and freshwater discharge to the ocean, affecting ocean circulation. However, their dynamics are not captured in large-scale climate models. We designed a simplified, computationally efficient model – FjordRPM – which accurately captures key fjord processes. It has direct applications for improving projections of ice melt, ocean circulation and sea-level rise.
Bradley W. Goodfellow, Marc W. Caffee, Greg Chmiel, Ruben Fritzon, Alasdair Skelton, and Arjen P. Stroeven
Solid Earth, 15, 1343–1363, https://doi.org/10.5194/se-15-1343-2024, https://doi.org/10.5194/se-15-1343-2024, 2024
Short summary
Short summary
Reconstructions of past earthquakes are useful to assess earthquake hazard risk. We assess a limestone scarp exposed by earthquakes along the Sparta Fault, Greece, using 36Cl and rare-earth elements and yttrium (REE-Y). Our analyses indicate an increase in the average scarp slip rate from 0.8–0.9 mm yr-1 at 6.5–7.7 kyr ago to 1.1–1.2 mm yr-1 up to the devastating 464 BCE earthquake. REE-Y indicate clays in the fault scarp; their potential use in palaeoseismicity would benefit from further study.
Andrés Castillo-Llarena, Franco Retamal-Ramírez, Jorge Bernales, Martín Jacques-Coper, Matthias Prange, and Irina Rogozhina
Clim. Past, 20, 1559–1577, https://doi.org/10.5194/cp-20-1559-2024, https://doi.org/10.5194/cp-20-1559-2024, 2024
Short summary
Short summary
During the last glacial period, the Patagonian Ice Sheet grew along the southern Andes, leaving marks on the landscape showing its former extents and timing. We use paleoclimate and ice sheet models to replicate its glacial history. We find that errors in the model-based ice sheet are likely induced by imprecise reconstructions of air temperature due to poorly resolved Andean topography in global climate models, while a fitting regional climate history is only captured by local sediment records.
Bradley W. Goodfellow, Arjen P. Stroeven, Nathaniel A. Lifton, Jakob Heyman, Alexander Lewerentz, Kristina Hippe, Jens-Ove Näslund, and Marc W. Caffee
Geochronology, 6, 291–302, https://doi.org/10.5194/gchron-6-291-2024, https://doi.org/10.5194/gchron-6-291-2024, 2024
Short summary
Short summary
Carbon-14 produced in quartz (half-life of 5700 ± 30 years) provides a new tool to date exposure of bedrock surfaces. Samples from 10 exposed bedrock surfaces in east-central Sweden give dates consistent with the timing of both landscape emergence above sea level through postglacial rebound and retreat of the last ice sheet shown in previous reconstructions. Carbon-14 in quartz can therefore be used for dating in landscapes where isotopes with longer half-lives give complex exposure results.
Brian R. Crow, Lev Tarasov, Michael Schulz, and Matthias Prange
Clim. Past, 20, 281–296, https://doi.org/10.5194/cp-20-281-2024, https://doi.org/10.5194/cp-20-281-2024, 2024
Short summary
Short summary
An abnormally warm period around 400,000 years ago is thought to have resulted in a large melt event for the Greenland Ice Sheet. Using a sequence of climate model simulations connected to an ice model, we estimate a 50 % melt of Greenland compared to today. Importantly, we explore how the exact methodology of connecting the temperatures and precipitation from the climate model to the ice sheet model can influence these results and show that common methods could introduce errors.
Brian R. Crow, Matthias Prange, and Michael Schulz
Clim. Past, 18, 775–792, https://doi.org/10.5194/cp-18-775-2022, https://doi.org/10.5194/cp-18-775-2022, 2022
Short summary
Short summary
To better understand the climate conditions which lead to extensive melting of the Greenland ice sheet, we used climate models to reconstruct the climate conditions of the warmest period of the last 800 000 years, which was centered around 410 000 years ago. Surprisingly, we found that atmospheric circulation changes may have acted to reduce the melt of the ice sheet rather than enhance it, despite the extensive warmth of the time.
Yongmei Gong and Irina Rogozhina
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-500, https://doi.org/10.5194/hess-2021-500, 2021
Revised manuscript not accepted
Short summary
Short summary
The results from our snow evolution modeling of glacierized drainage basins in western Norway forced by bias-corrected, IPCC class regional climate model experiment CORDEX outputs reveal that the applicability of such forcing to directly drive local scale projections is not satisfactory. It is necessary to correct the original CORDEX datasets for bias against reference data that represent the current climate conditions of a specific area of interest for future projections.
Martim Mas e Braga, Richard Selwyn Jones, Jennifer C. H. Newall, Irina Rogozhina, Jane L. Andersen, Nathaniel A. Lifton, and Arjen P. Stroeven
The Cryosphere, 15, 4929–4947, https://doi.org/10.5194/tc-15-4929-2021, https://doi.org/10.5194/tc-15-4929-2021, 2021
Short summary
Short summary
Mountains higher than the ice surface are sampled to know when the ice reached the sampled elevation, which can be used to guide numerical models. This is important to understand how much ice will be lost by ice sheets in the future. We use a simple model to understand how ice flow around mountains affects the ice surface topography and show how much this influences results from field samples. We also show that models need a finer resolution over mountainous areas to better match field samples.
Cited articles
Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of
the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 1:
Boundary conditions and climatic forcing, The Cryosphere, 14, 599–632,
https://doi.org/10.5194/tc-14-599-2020, 2020. a, b, c, d
Barletta, V. R., Bevis, M., Smith, B. E., Wilson, T., Brown, A., Bordoni, A.,
Willis, M., Khan, S. A., Rovira-Navarro, M., Dalziel, I., Smalley Jr., R., Kendrick, E., Konfal, S., Ii, D. J. C., Aster, R. C., Nyblade, A., and Wiens, D. A.: Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability, Science, 360, 1335–1339, 2018. a
Bauch, H. A., Erlenkeuser, H., Helmke, J. P., and Struck, U.: A paleoclimatic
evaluation of marine oxygen isotope stage 11 in the high-northern Atlantic
(Nordic seas), Global Planet. Change, 24, 27–39, https://doi.org/10.1016/S0921-8181(99)00067-3, 2000. a
Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S. O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J., and Wolff, E.: An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka, Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, 2013. a, b, c
Beckmann, A. and Goosse, H.: A parameterization of ice shelf–ocean interaction for climate models, Ocean Model., 5, 157–170, 2003. a
Berger, A. and Loutre, M.-F.: Climate 400,000 years ago, a key to the future?, Washington DC American Geophysical Union Geophysical Monograph Series 137, American Geophysical Union, Washington, D.C., 17–26, 2003. a
Bernales, J., Rogozhina, I., Greve, R., and Thomas, M.: Comparison of hybrid
schemes for the combination of shallow approximations in numerical simulations of the Antarctic Ice Sheet, The Cryosphere, 11, 247–265,
https://doi.org/10.5194/tc-11-247-2017, 2017a. a
Calov, R. and Greve, R.: A semi-analytical solution for the positive degree-day model with stochastic temperature variations, J. Glaciol., 51,
173–175, 2005. a
Capron, E., Rovere, A., Austermann, J., Axford, Y., Barlow, N. L., Carlson,
A. E., de Vernal, A., Dutton, A., Kopp, R. E., McManus, J. F., Menviel, L., Otto-Bliesner, B. L., Robinson, A., Shakun, J. D., Tzedakis, P. C., and Wolff, E. W.: Challenges and research priorities to understand interactions between climate, ice sheets and global mean sea level during past interglacials, Quaternary Sci. Rev., 219, 308–311, 2019. a, b
Chen, F., Friedman, S., Gertler, C. G., Looney, J., O'Connell, N., Sierks,
K., and Mitrovica, J. X.: Refining estimates of polar ice volumes during the
MIS11 Interglacial using sea level records from South Africa, J. Climate, 27, 8740–8746, 2014. a
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The Last Glacial Maximum, Science, 325, 710–714, https://doi.org/10.1126/science.1172873, 2009. a
Clason, C. C., Applegate, P., and Holmlund, P.: Modelling Late Weichselian
evolution of the Eurasian ice sheets forced by surface meltwater-enhanced basal sliding, J. Glaciol., 60, 29–40, 2014. a
de Boer, B., van de Wal, R. S. W., Lourens, L. J., Bintanja, R., and Reerink,
T. J.: A continuous simulation of global ice volume over the past 1 million
years with 3-D ice-sheet models, Clim. Dynam., 41, 1365–1384,
https://doi.org/10.1007/s00382-012-1562-2, 2013. a
de Boer, B., Dolan, A. M., Bernales, J., Gasson, E., Goelzer, H., Golledge, N. R., Sutter, J., Huybrechts, P., Lohmann, G., Rogozhina, I., Abe-Ouchi, A., Saito, F., and van de Wal, R. S. W.: Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project, The Cryosphere, 9, 881–903, https://doi.org/10.5194/tc-9-881-2015, 2015. a
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future
sea-level rise, Nature, 531, 591–597, 2016. a
Doherty, J. M. and Thibodeau, B.: Cold Water in a Warm World: Investigating the Origin of the Nordic Seas' Unique Surface Properties During MIS 11,
Front. Mari. Sci., 5, 251, https://doi.org/10.3389/fmars.2018.00251, 2018. a
Dolan, A. M., De Boer, B., Bernales, J., Hill, D. J., and Haywood, A. M.: High climate model dependency of Pliocene Antarctic ice-sheet predictions,
Nat. Commun., 9, 2799, https://doi.org/10.1038/s41467-018-05179-4, 2018. a
Favier, L., Jourdain, N. C., Jenkins, A., Merino, N., Durand, G., Gagliardini, O., Gillet-Chaulet, F., and Mathiot, P.: Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3), Geosci. Model Dev., 12, 2255–2283, https://doi.org/10.5194/gmd-12-2255-2019, 2019. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a, b, c
Garbe, J., Albrecht, T., Levermann, A., Donges, J. F., and Winkelmann, R.: The hysteresis of the Antarctic Ice Sheet, Nature, 585, 538–544, 2020. a
Gladstone, R. M., Warner, R. C., Galton-Fenzi, B. K., Gagliardini, O., Zwinger, T., and Greve, R.: Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting, The Cryosphere, 11, 319–329,
https://doi.org/10.5194/tc-11-319-2017, 2017. a
Greve, R.: Application of a polythermal three-dimensional ice sheet model to
the Greenland ice sheet: response to steady-state and transient climate
scenarios, J. Climate, 10, 901–918, 1997. a
Greve, R.: Ice sheet model SICOPOLIS, available at: http://sicopolis.net/, last access: 4 May 2018. a
Greve, R. and Blatter, H.: Comparison of thermodynamics solvers in the
polythermal ice sheet model SICOPOLIS, Polar Sci., 10, 11–23, 2016. a
Handiani, D., Paul, A., Prange, M., Merkel, U., Dupont, L., and Zhang, X.: Tropical vegetation response to Heinrich Event 1 as simulated with the UVic ESCM and CCSM3, Clim. Past, 9, 1683–1696, https://doi.org/10.5194/cp-9-1683-2013, 2013. a
Hearty, P. J., Hollin, J. T., Neumann, A. C., O'Leary, M. J., and McCulloch,
M.: Global sea-level fluctuations during the Last Interglaciation (MIS 5e), Quaternary Sci. Rev., 26, 2090–2112, 2007. a
Hillenbrand, C.-D., Fütterer, D., Grobe, H., and Frederichs, T.: No evidence
for a Pleistocene collapse of the West Antarctic Ice Sheet from continental margin sediments recovered in the Amundsen Sea, Geo-Mar. Lett., 22, 51–59, https://doi.org/10.1007/s00367-002-0097-7, 2002. a
Hillenbrand, C.-D., Kuhn, G., and Frederichs, T.: Record of a Mid-Pleistocene
depositional anomaly in West Antarctic continental margin sediments: an
indicator for ice-sheet collapse?, Quaternary Sci. Rev., 28, 1147–1159, https://doi.org/10.1016/j.quascirev.2008.12.010, 2009. a
Holden, P. B., Edwards, N. R., Wolff, E. W., Lang, N. J., Singarayer, J. S.,
Valdes, P. J., and Stocker, T. F.: Interhemispheric coupling, the West
Antarctic Ice Sheet and warm Antarctic interglacials, Clim. Past, 6, 431–443, https://doi.org/10.5194/cp-6-431-2010, 2010. a
Holden, P. B., Edwards, N. R., Wolff, E. W., Valdes, P. J., and Singarayer, J. S.: The Mid-Brunhes Event and West Antarctic Ice Sheet stability, J. Quaternary Sci., 26, 474–477, https://doi.org/10.1002/jqs.1525, 2011. a
Holland, P. R., Jenkins, A., and Holland, D. M.: The response of ice shelf
basal melting to variations in ocean temperature, J. Climate, 21, 2558–2572, 2008. a
Imbrie, J., McIntyre, A., and Mix, A.: Oceanic Response to Orbital Forcing in the Late Quaternary: Observational and Experimental Strategies, in: Climate and Geo-Sciences, edited by: Berger, A., Schneider, S., and Duplessy, J. C., Springer Netherlands, Dordrecht, 121–164, https://doi.org/10.1007/978-94-009-2446-8_7, 1989. a, b, c
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S.,
Hoffmann, G., Minster, B., Nouet, J., Barnola, J.-M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and millennial Antarctic climate variability over the past 800,000 years, Science, 317, 793–796, 2007. a, b
Kandiano, E. S., van der Meer, M. T. J., Bauch, H. A., Helmke, J., Damsté, J. S. S., and Schouten, S.: A cold and fresh ocean surface in the Nordic Seas during MIS 11: Significance for the future ocean, Geophys. Res.
Lett., 43, 10929–10937, https://doi.org/10.1002/2016GL070294, 2016. a
Kleinen, T., Hildebrandt, S., Prange, M., Rachmayani, R., Müller, S.,
Bezrukova, E., Brovkin, V., and Tarasov, P. E.: The climate and vegetation of
Marine Isotope Stage 11 – model results and proxy-based reconstructions at
global and regional scale, Quatern. Int., 348, 247–265,
https://doi.org/10.1016/j.quaint.2013.12.028, 2014. a
Konrad, H., Thoma, M., Sasgen, I., Klemann, V., Grosfeld, K., Barbi, D., and
Martinec, Z.: The deformational response of a viscoelastic solid earth model
coupled to a thermomechanical ice sheet model, Surv. Geophys., 35, 1441–1458, 2014. a
Kukla, G.: How long and how stable was the last interglacial?, Quaternary Sci. Rev., 16, 605–612, https://doi.org/10.1016/S0277-3791(96)00114-X, 1997. a
Loutre, M. and Berger, A.: Marine Isotope Stage 11 as an analogue for the
present interglacial, Global Planet. Change, 36, 209–217,
https://doi.org/10.1016/S0921-8181(02)00186-8, 2003. a
Martin, M. A., Winkelmann, R., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet, The Cryosphere, 5, 727–740, https://doi.org/10.5194/tc-5-727-2011, 2011. a
Mas e Braga, M.: martimmas/MIS11c_exps: MIS11c experiments (version 1.0), Zenodo, https://doi.org/10.5281/zenodo.4471206, 2020. a
Maule, C. F., Purucker, M. E., Olsen, N., and Mosegaard, K.: Heat Flux
Anomalies in Antarctica Revealed by Satellite Magnetic Data, Science, 309,
464–467, https://doi.org/10.1126/science.1106888, 2005. a
Milker, Y., Rachmayani, R., Weinkauf, M. F. G., Prange, M., Raitzsch, M.,
Schulz, M., and Kučera, M.: Global and regional sea surface temperature
trends during Marine Isotope Stage 11, Clim. Past, 9, 2231–2252, https://doi.org/10.5194/cp-9-2231-2013, 2013. a, b
Mitrovica, J. X., Gomez, N., and Clark, P. U.: The sea-level fingerprint of
West Antarctic collapse, Science, 323, 753–753, 2009. a
Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F.,
Krissek, L., Niessen, F., Pompilio, M., Wilson, T., Carter, L., DeConto, R., Huybers, P., McKay, R., Pollard, D., Ross, J., Winter, D., Barrett, P., Browne, G., Cody, R., Cowan, E., Crampton, J., Dunbar, G., Dunbar, N., Florindo, F., Gebhardt, C., Graham, I., Hannah, M., Hansaraj, D., Harwood, D., Helling, D., Henrys, S., Hinnov, L., Kuhn, G., Kyle, P., Läufer, A., Maffioli, P., Magens, D., Mandernack, K., McIntosh, W., Millan, C., Morin, R., Ohneiser, C., Paulsen, T., Persico, D., Raine, I., Reed, J., Riesselman, C., Sagnotti, L., Schmitt, D., Sjunneskog, C., Strong, P., Taviani, M., Vogel, S., Wilch, T., and Williams, T.: Obliquity-paced Pliocene West Antarctic ice sheet oscillations, Nature, 458, 322–328, 2009. a
Noble, T. L., Rohling, E. J., Aitken, A. R. A., Bostock, H. C., Chase, Z., Gomez, N., Jong, L. M., King, M. A., Mackintosh, A. N., McCormack, F. S., McKay, R. M., Menviel, L., Phipps, S. J., Weber, M. E., Fogwill, C. J., Gayen, B., Golledge, N. R., Gwyther, D. E., McHogg, A. C., Martos, Y. M., Pena-Molino, B., Roberts, J., van de Flierdt, T., and Williams, T.: The sensitivity of the Antarctic Ice Sheet to a changing climate: Past, present and future, Rev. Geophys., 58, e2019RG000663, https://doi.org/10.1029/2019RG000663, 2020. a
Parrenin, F., Barnola, J.-M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, H., Fujita, S., Jouzel, J., Kawamura, K., Lemieux-Dudon, B., Loulergue, L., Masson-Delmotte, V., Narcisi, B., Petit, J.-R., Raisbeck, G., Raynaud, D., Ruth, U., Schwander, J., Severi, M., Spahni, R., Steffensen, J. P., Svensson, A., Udisti, R., Waelbroeck, C., and Wolff, E.: The EDC3 chronology for the EPICA Dome C ice core, Clim. Past, 3, 485–497, https://doi.org/10.5194/cp-3-485-2007, 2007. a, b
Petit, J.-R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile,
I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, 1999. a, b
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, J., Delaygue, G., and Delmotte, M.: Vostok ice core data for 420,000 years, IGBP pages/world data center for paleoclimatology data contribution series #2001–076, NOAA/NGDC Paleoclimatology Program, NOAA/NGDC, Boulder, CO, USA, 2001. a, b
Pollard, D. and DeConto, R.: Description of a hybrid ice sheet-shelf model, and application to Antarctica, Geosci. Model Dev., 5, 1273–1295, https://doi.org/10.5194/gmd-5-1273-2012, 2012a. a, b
Pollard, D. and DeConto, R. M.: A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica, The Cryosphere, 6, 953–971, https://doi.org/10.5194/tc-6-953-2012, 2012b. a
Rachmayani, R., Prange, M., and Schulz, M.: Intra-interglacial climate
variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15, Clim. Past, 12, 677–695, https://doi.org/10.5194/cp-12-677-2016, 2016. a
Rachmayani, R., Prange, M., Lunt, D. J., Stone, E. J., and Schulz, M.:
Sensitivity of the Greenland Ice Sheet to Interglacial Climate Forcing: MIS 5e Versus MIS 11, Paleoceanography, 32, 1089–1101, https://doi.org/10.1002/2017PA003149, 2017. a
Raymo, M. E. and Mitrovica, J. X.: Collapse of polar ice sheets during the
stage 11 interglacial, Nature, 483, 453–456, https://doi.org/10.1038/nature10891, 2012. a, b, c
Raynaud, D., Barnola, J.-M., Souchez, R., Lorrain, R., Petit, J.-R., Duval, P., and Lipenkov, V. Y.: The record for Marine Isotopic Stage 11, Nat.
Commun., 436, 39–40, https://doi.org/10.1038/43639b, 2005. a, b
Reese, R., Albrecht, T., Mengel, M., Asay-Davis, X., and Winkelmann, R.:
Antarctic sub-shelf melt rates via PICO, The Cryosphere, 12, 1969–1985,
https://doi.org/10.5194/tc-12-1969-2018, 2018. a
Reyes, A. V., Carlson, A. E., Beard, B. L., Hatfield, R. G., Stoner, J. S.,
Winsor, K., Welke, B., and Ullman, D. J.: South Greenland ice-sheet collapse during Marine Isotope Stage 11, Nature, 510, 525–528,
https://doi.org/10.1038/nature13456, 2014. a
Robinson, A., Alvarez-Solas, J., Calov, R., Ganopolski, A., and Montoya, M.:
MIS-11 duration key to disappearance of the Greenland Ice Sheet, Nat. Commun., 8, 16008, https://doi.org/10.1038/ncomms16008, 2017. a, b, c
Sato, T. and Greve, R.: Sensitivity experiments for the Antarctic Ice Sheet
with varied sub-ice-shelf melting rates, Ann. Glaciol., 53, 221–228, 2012. a
Scherer, R. P.: Quaternary interglacials and the West Antarctic Ice Sheet, in: Geophysical Monograph Series, vol. 137, edited by: Droxler, A. W., Poore, R. Z., and Burckle, L. H., American Geophysical Union, Washington, D. C., 103–112, https://doi.org/10.1029/137GM08, 2003. a
Scherer, R. P., Aldahan, A., Tulaczyk, S., Possnert, G., Engelhardt, H., and
Kamb, B.: Pleistocene collapse of the West Antarctic Ice Sheet, Science, 281, 82–85, 1998. a
Shackleton, N. J., Sánchez-Goñi, M. F., Pailler, D., and Lancelot, Y.: Marine isotope substage 5e and the Eemian interglacial, Global Planet. Change, 36, 151–155, 2003. a
Sutter, J., Fischer, H., Grosfeld, K., Karlsson, N. B., Kleiner, T., Van Liefferinge, B., and Eisen, O.: Modelling the Antarctic Ice Sheet across the mid-Pleistocene transition – implications for Oldest Ice, The Cryosphere, 13, 2023–2041, https://doi.org/10.5194/tc-13-2023-2019, 2019. a, b, c, d
Swanger, K. M., Lamp, J. L., Winckler, G., Schaefer, J. M., and Marchant, D. R.: Glacier advance during Marine Isotope Stage 11 in the McMurdo dry valleys of Antarctica, Scient. Rep., 7, 41433, https://doi.org/10.1038/srep41433, 2017. a, b, c
Tigchelaar, M., Timmermann, A., Pollard, D., Friedrich, T., and Heinemann, M.: Local insolation changes enhance Antarctic interglacials: Insights from
an 800,000-year ice sheet simulation with transient climate forcing, Earth
Planet. Sc. Lett., 495, 69–78, https://doi.org/10.1016/j.epsl.2018.05.004, 2018. a
Tigchelaar, M., Timmermann, A., Friedrich, T., Heinemann, M., and Pollard, D.: Nonlinear response of the Antarctic Ice Sheet to late Quaternary sea level and climate forcing, The Cryosphere, 13, 2615–2631, https://doi.org/10.5194/tc-13-2615-2019, 2019. a, b, c, d
Turney, C. S. M., Fogwill, C. J., Golledge, N. R., McKay, N. P., van Sebille, E., Jones, R. T., Etheridge, D., Rubino, M., Thornton, D. P., Davies, S. M.,
Bronk Ramsey, C., Thomas, Z. A., Bird, M. I., Munksgaard, N. C., Kohno, M., Woodward, J., Winter, K., Weyrich, L. S., Rootes, C. M., Millman, H., Albert, P. G., Rivera, A., van Ommen, T., Curran, M., Moy, A., Rahmstorf, S., Kawamura, K., Hillenbrand, C.-D., Weber, M. E., Manning, C. J., Young, J., and Cooper, A.: Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica, P. Natl. Acad. Sci. USA, 117, 3996–4006, 2020. a, b
Tzedakis, P. C., Wolff, E. W., Skinner, L. C., Brovkin, V., Hodell, D. A.,
McManus, J. F., and Raynaud, D.: Can we predict the duration of an interglacial?, Clim. Past, 8, 1473–1485, https://doi.org/10.5194/cp-8-1473-2012, 2012. a
Uemura, R., Motoyama, H., Masson-Delmotte, V., Jouzel, J., Kawamura, K.,
Goto-Azuma, K., Fujita, S., Kuramoto, T., Hirabayashi, M., Miyake, T., Ohno, H., Fujita, K., Abe-Ouchi, A., Iizuka, Y., Horikawa, S., Igarashi, M., Suzuki, K., Suzuki, T., and Fujii, Y,: Asynchrony between Antarctic temperature and CO2 associated with obliquity over the past 720,000 years, Nat. Commun., 9, 961, https://doi.org/10.1038/s41467-018-03328-3, 2018. a, b, c, d
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J., McManus, J., Lambeck,
K., Balbon, E., and Labracherie, M.: Sea-level and deep water temperature
changes derived from benthic foraminifera isotopic records, Quaternary Sci. Rev., 21, 295–305, https://doi.org/10.1016/S0277-3791(01)00101-9, 2002. a, b, c
WAIS Divide Project Members: Onset of deglacial warming in West Antarctica driven by local orbital forcing, Nature, 500, 440–444, https://doi.org/10.1038/nature12376, 2013. a
Willerslev, E., Cappellini, E., Boomsma, W., Nielsen, R., Hebsgaard, M. B.,
Brand, T. B., Hofreiter, M., Bunce, M., Poinar, H. N., Dahl-Jensen, D., Johnsen, S., Steffensen, J. P., Bennike, O., Schwenninger, J.-L., Nathan, R.,
Armitage, S., de Hoog, C.-J., Alfimov, V., Christl, M., Beer, J., Muscheler,
R., Barker, J., Sharp, M., Penkman, K. E. H., Haile, J., Taberlet, P., Gilbert, M. T. P., Casoli, A., Campani, E., and Collins, M. J.: Ancient
Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland, Science, 317, 111–114, https://doi.org/10.1126/science.1141758, 2007. a
Wilson, D. J., Bertram, R. A., Needham, E. F., van de Flierdt, T., Welsh, K. J., McKay, R. M., Mazumder, A., Riesselman, C. R., Jimenez-Espejo, F. J., and Escutia, C.: Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials, Nature, 561, 383–386, https://doi.org/10.1038/s41586-018-0501-8, 2018. a, b, c
Yang, H. and Zhu, J.: Equilibrium thermal response timescale of global oceans, Geophys. Res. Lett., 38, L14711, https://doi.org/10.1029/2011GL048076, 2011.
a
Zeitz, M., Levermann, A., and Winkelmann, R.: Sensitivity of ice loss to
uncertainty in flow law parameters in an idealized one-dimensional geometry,
The Cryosphere, 14, 3537–3550, https://doi.org/10.5194/tc-14-3537-2020, 2020. a
Short summary
We combine a computer model with different climate records to simulate how Antarctica responded to warming during marine isotope substage 11c, which can help understand Antarctica's natural drivers of change. We found that the regional climate warming of Antarctica seen in ice cores was necessary for the model to match the recorded sea level rise. A collapse of its western ice sheet is possible if a modest warming is sustained for ca. 4000 years, contributing 6.7 to 8.2 m to sea level rise.
We combine a computer model with different climate records to simulate how Antarctica responded...