Articles | Volume 15, issue 5
https://doi.org/10.5194/tc-15-2415-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2415-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Behavior of saline ice under cyclic flexural loading
Andrii Murdza
CORRESPONDING AUTHOR
Thayer School of Engineering, Dartmouth College, Hanover, NH,
03755, USA
Erland M. Schulson
Thayer School of Engineering, Dartmouth College, Hanover, NH,
03755, USA
Carl E. Renshaw
Thayer School of Engineering, Dartmouth College, Hanover, NH,
03755, USA
Department of Earth Sciences, Dartmouth College, Hanover, NH,
03755, USA
Related authors
Andrii Murdza, Arttu Polojärvi, Erland M. Schulson, and Carl E. Renshaw
The Cryosphere, 15, 2957–2967, https://doi.org/10.5194/tc-15-2957-2021, https://doi.org/10.5194/tc-15-2957-2021, 2021
Short summary
Short summary
The strength of refrozen floes or piles of ice rubble is an important factor in assessing ice-structure interactions, as well as the integrity of an ice cover itself. The results of this paper provide unique data on the tensile strength of freeze bonds and are the first measurements to be reported. The provided information can lead to a better understanding of the behavior of refrozen ice floes and better estimates of the strength of an ice rubble pile.
Evan N. Dethier, Christian M. Erikson, and Carl E. Renshaw
EGUsphere, https://doi.org/10.5194/egusphere-2025-5691, https://doi.org/10.5194/egusphere-2025-5691, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Large, landslide-like failures in permafrost sediment, called thaw slumps, appear to be expanding across much of the Arctic. We investigated a region in Russia where more than 1700 such failures occurred during a heatwave in 2020. We used satellites to show that river sediment transport downstream of slumps spiked to more than double background levels. We find that erosion from slumps can rapidly change rivers and that rivers can be an early indicator of upstream thaw slump failure.
Andrii Murdza, Arttu Polojärvi, Erland M. Schulson, and Carl E. Renshaw
The Cryosphere, 15, 2957–2967, https://doi.org/10.5194/tc-15-2957-2021, https://doi.org/10.5194/tc-15-2957-2021, 2021
Short summary
Short summary
The strength of refrozen floes or piles of ice rubble is an important factor in assessing ice-structure interactions, as well as the integrity of an ice cover itself. The results of this paper provide unique data on the tensile strength of freeze bonds and are the first measurements to be reported. The provided information can lead to a better understanding of the behavior of refrozen ice floes and better estimates of the strength of an ice rubble pile.
Cited articles
Ashby, M. M. and Jones, D. R. H.: Engineering Materials 1: An Introduction
to Properties, Applications and Design, Elsevier, 2012.
Asplin, M. G., Galley, R., Barber, D. G., and Prinsenberg, S.: Fracture of
summer perennial sea ice by ocean swell as a result of Arctic storms, J.
Geophys. Res.-Ocean., 117, C06025, https://doi.org/10.1029/2011JC007221, 2012.
Bathias, C. and Pineau, A. (Eds.): Fatigue of Materials and Structures, John Wiley & Sons, Inc., Hoboken, NJ, USA,
2013.
Bažant, Z. P., Belytschko, T. B., and Chang, T.: Continuum Theory for
Strain-Softening, J. Eng. Mech., 110, 1666–1692,
https://doi.org/10.1061/(asce)0733-9399(1984)110:12(1666), 1984.
Bond, P. E. and Langhorne, P. J.: Fatigue behavior of cantilever beams of
saline ice, J. Cold Reg. Eng., 11, 99–112,
https://doi.org/10.1061/(ASCE)0887-381X(1997)11:2(99), 1997.
Broek, D.: Elementary engineering fracture mechanics, 1st edn., Springer,
Dordrecht, 1986.
Cannon, N. P., Schulson, E. M., Smith, T. R., and Frost, H. J.: Wing cracks
and brittle compressive fracture, Acta Metall. Mater., 38, 1955–1962,
https://doi.org/10.1016/0956-7151(90)90307-3, 1990.
Cole, D. and Dempsey, J.: Laboratory observations of acoustic emissions from
antarctic first-year sea ice cores under cyclic loading, in: 18th
International POAC Conference, Potsdam, New York, USA, 26–30 June 2005, Vol. 3, 1083–1092, 2006.
Cole, D. M.: Reversed direct-stress testing of ice: Initial experimental
results and analysis, Cold Reg. Sci. Technol., 18, 303–321,
https://doi.org/10.1016/0165-232X(90)90027-T, 1990.
Cole, D. M.: A model for the anelastic straining of saline ice subjected to
cyclic loading, Philos. Mag. A, 72, 231–248,
https://doi.org/10.1080/01418619508239592, 1995.
Cole, D. M.: Modeling the cyclic loading response of sea ice, Int. J. Solids
Struct., 35, 4067–4075, https://doi.org/10.1016/S0020-7683(97)00301-6, 1998.
Cole, D. M. and Dempsey, J. P.: In situ Sea Ice Experiments in McMurdo
Sound: Cyclic Loading, Fracture, and Acoustic Emissions, J. Cold Reg. Eng.,
18, 155–174, https://doi.org/10.1061/(ASCE)0887-381X(2004)18:4(155), 2004.
Cole, D. M. and Durell, G. D.: The cyclic loading of saline ice, Philos.
Mag. A, 72, 209–229,
https://doi.org/10.1080/01418619508239591, 1995.
Cole, D. M., Johnson, R. A., and Durell, G. D.: Cyclic loading and creep
response of aligned first-year sea ice, J. Geophys. Res.-Ocean., 103,
21751–21758, https://doi.org/10.1029/98JC01265, 1998.
Cole, D. M., Dempsey, J., Kjestveit, G., Shapiro, S., Shapiro, L., and
Morley, G.: The cyclic and fracture response of sea ice in McMurdo Sound.
Part I, in: Proceedings of the 16th IAHR International Symposium on Ice,
Dunedin, New Zealand, 2–6 December 2002.
Collins, C. O., Rogers, W. E., Marchenko, A., and Babanin, A. V.: In situ
measurements of an energetic wave event in the Arctic marginal ice zone,
Geophys. Res. Lett., 42, 1863–1870, https://doi.org/10.1002/2015GL063063, 2015.
Dempsey, J., Cole, D. M., Shapiro, S., Kjestveit, G., Shapiro, L., and
Morley, G.: The cyclic and fracture response of sea ice in McMurdo Sound.
Part II, in: Proceedings of the 17th International Conference on Port and
Ocean Engineeringunder Arctic Conditions, Trondheim, Norway, 16–19 June, 2003, available at:
https://www.researchgate.net/publication/303460064_The_cyclic_and_fracture_response_of_sea_ice_in_McMurdo_Sound_Part_II (last access:
14 January 2020), 2003.
Elvin, A. A. and Shyam Sunder, S.: Microcracking due to grain boundary
sliding in polycrystalline ice under uniaxial compression, Acta Mater.,
44, 43–56, https://doi.org/10.1016/1359-6454(95)00157-1, 1996.
Evans, R. J. and Untersteiner, N.: Thermal cracks in floating ice sheets, J.
Geophys. Res., 76, 694–703, https://doi.org/10.1029/JC076i003p00694, 1971.
Frankenstein, G. and Garner, R.: Equations for Determining the Brine Volume
of Sea Ice from −0.5∘ to −22.9 ∘C, J. Glaciol., 6,
943–944, https://doi.org/10.3189/S0022143000020244, 1967.
Golding, N., Snyder, S. A., Schulson, E. M., and Renshaw, C. E.: Plastic
faulting in saltwater ice, J. Glaciol., 60, 447–452,
https://doi.org/10.3189/2014JoG13J178, 2014.
Goldsby, D. L. and Kohlstedt, D. L.: Grain boundary sliding in fine-grained
ice I, Scr. Mater., 37, 1399–1406, https://doi.org/10.1016/S1359-6462(97)00246-7,
1997.
Gupta, V., Bergström, J., and Picu, C. R.: Effect of step-loading history
and related grain-boundary fatigue in freshwater columnar ice in the brittle
deformation regime, Philos. Mag. Lett., 77, 241–247,
https://doi.org/10.1080/095008398178372, 1998.
Haskell, T. G., Robinson, W. H., and Langhorne, P. J.: Preliminary results
from fatigue tests on in situ sea ice beams, Cold Reg. Sci. Technol., 24,
167–176, https://doi.org/10.1016/0165-232X(95)00015-4, 1996.
Hendrikse, H. and Metrikine, A.: Edge indentation of ice with a
displacement-controlled oscillating cylindrical structure, Cold Reg. Sci.
Technol., 121, 100–107, https://doi.org/10.1016/j.coldregions.2015.10.013, 2016.
Hwang, B., Wilkinson, J., Maksym, E., Graber, H. C., Schweiger, A., Horvat,
C., Perovich, D. K., Arntsen, A. E., Stanton, T. P., Ren, J., and Wadhams,
P.: Winter-to-summer transition of Arctic sea ice breakup and floe size
distribution in the Beaufort Sea, Elem. Sci. Anth., 5, 40,
https://doi.org/10.1525/elementa.232, 2017.
Iliescu, D. and Schulson, E. M.: Brittle compressive failure of ice:
Monotonic versus cyclic loading, Acta Mater., 50, 2163–2172,
https://doi.org/10.1016/S1359-6454(02)00060-5, 2002.
Iliescu, D., Murdza, A., Schulson, E. M., and Renshaw, C. E.: Strengthening
ice through cyclic loading, J. Glaciol., 63, 663–669,
https://doi.org/10.1017/jog.2017.32, 2017.
Jordaan, I. J.: Mechanics of ice-structure interaction, Eng. Fract. Mech.,
68, 1923–1960, https://doi.org/10.1016/S0013-7944(01)00032-7, 2001.
Jordaan, I. J., Xiao, J., Wells, J., and Derradji-Aouat, A.: Ice crushing and
cyclic loading in compression, in: 19th IAHR International Symposium on Ice, Vancouver, Canada, 6–11 July 2008,
1097–1106, 2008.
Karulina, M., Karulin, E., and Marchenko, A.: Field investigations of first
year ice mechanical properties in North-West Barents Sea, in: Proceedings of
the 22nd International Conference on Port and Ocean Engineering under Arctic
Conditions, Espoo, Finland, 9–13 June 2013, 1–11, 2013.
Karulina, M., Marchenko, A., Karulin, E., Sodhi, D., Sakharov, A., and
Chistyakov, P.: Full-scale flexural strength of sea ice and freshwater ice
in Spitsbergen Fjords and North-West Barents Sea, Appl. Ocean Res., 90, 101853,
https://doi.org/10.1016/j.apor.2019.101853, 2019.
Kohout, A. L., Williams, M. J. M., Toyota, T., Lieser, J., and Hutchings, J.:
In situ observations of wave-induced sea ice breakup, Deep. Res. Pt. II, 131, 22–27, https://doi.org/10.1016/j.dsr2.2015.06.010, 2016.
Langhorne, P. J. and Haskell, T. G.: Acoustic emission during fatigue
experiments on first year sea ice, Cold Reg. Sci. Technol., 24, 237–250,
https://doi.org/10.1016/0165-232X(95)00021-3, 1996.
Langhorne, P. J., Squire, V. A., Fox, C., and Haskell, T. G.: Break-up of sea
ice by ocean waves, Ann. Glaciol., 27, 438–442,
https://doi.org/10.3189/S0260305500017869, 1998.
Langhorne, P. J., Squire, V. A., and Haskell, T. G.: Role of fatigue in
wave-induced break-up of sea ice – a review, in: Ice in Surface Waters:
Proceedings of the 14th International Symposium on Ice, Potsdam, New York, USA, 27–31 July 1998, 1019–1023, 1999.
Langhorne, P. J., Squire, V. A., Fox, C., and Haskell, T. G.: Lifetime
estimation for a land-fast ice sheet subjected to ocean swell, Ann.
Glaciol., 33, 333–338, https://doi.org/10.3189/172756401781818419, 2001.
Lishman, B., Marchenko, A., Sammonds, P., and Murdza, A.: Acoustic emissions
from in situ compression and indentation experiments on sea ice, Cold Reg.
Sci. Technol., 172, 102987, https://doi.org/10.1016/j.coldregions.2019.102987, 2020.
Liu, A. K., Mollo-Christensen, E., Liu, A. K., and Mollo-Christensen, E.:
Wave Propagation in a Solid Ice Pack, J. Phys. Oceanogr., 18, 1702–1712,
https://doi.org/10.1175/1520-0485(1988)018<1702:WPIASI>2.0.CO;2,
1988.
Masterson, D.: The Story of Offshore Arctic Engineering –
Cambridge Scholars Publishing, available at:
https://books.google.com/books/about/The_Story_of_Offshore_Arctic_Engineering.html?id=y9N1DwAAQBAJ (last access: 4 March 2021), 2018.
Michel, B. and Ramseier, R. O.: Classification of river and lake ice, Can.
Geotech. J., 8, 36–45, https://doi.org/10.1139/t71-004, 1971.
Mulmule, S. V. and Dempsey, J. P.: Stress-Separation Curves for Saline Ice
Using Fictitious Crack Model, J. Eng. Mech., 123, 870–877,
https://doi.org/10.1061/(asce)0733-9399(1997)123:8(870), 1997.
Murdza, A., Marchenko, A., Sakharov, A., Chistyakov, P., Karulin, E., and
Karulina, M.: Test with L-shaped cantilever beam for complex shear and
bending strength, in: 23rd IAHR International Symposium on Ice, Ann
Arbor, Michigan, USA, 31 May–3 June 2016, 1–9, 2016.
Murdza, A., Schulson, E. M., and Renshaw, C. E.: Hysteretic behavior of
freshwater ice under cyclic loading: preliminary results, in: 24th IAHR
International Symposium on Ice, Vladivostok, Russia, 4–9 June 2018, 185–192, 2018.
Murdza, A., Schulson, E. M., and Renshaw, C. E.: The effect of cyclic loading
on the flexural strength of columnar freshwater ice, in: Proceedings of the
International Conference on Port and Ocean Engineering under Arctic
Conditions, POAC, Delft, The Netherlands, 9–13 June, 2019.
Murdza, A., Marchenko, A., Schulson, E., Renshaw, C., Sakharov, A., Karulin,
E., and Chistyakov, P.: Results of preliminary cyclic loading experiments on
natural lake ice and sea ice, in: 25th IAHR International Symposium on Ice,
Virtual Conference, 23–25 November, 2020a.
Murdza, A., Schulson, E. M., and Renshaw, C. E.: Strengthening of
columnar-grained freshwater ice through cyclic flexural loading, J.
Glaciol., 66, 556–566, https://doi.org/10.1017/jog.2020.31, 2020b.
Murdza, A., Marchenko, A., Schulson, E. M., and Renshaw, C. E.: Cyclic
strengthening of lake ice, J. Glaciol., 67, 182–185,
https://doi.org/10.1017/jog.2020.86, 2021.
O'Rourke, B. J., Jordaan, I. J., Taylor, R. S., and Gürtner, A.:
Experimental investigation of oscillation of loads in ice high-pressure
zones, part 1: Single indentor system, Cold Reg. Sci. Technol., 124, 25–39,
https://doi.org/10.1016/J.COLDREGIONS.2015.12.005, 2016.
Pistone, K., Eisenman, I., and Ramanathan, V.: Observational determination of
albedo decrease caused by vanishing Arctic sea ice, P. Natl. Acad. Sci.
USA, 111, 3322–3326, https://doi.org/10.1073/pnas.1318201111, 2014.
Prinsenberg, S. J. and Peterson, I. K.: Observing regional-scale pack-ice
decay processes with helicopter-borne sensors and moored upward-looking
sonars, Ann. Glaciol., 52, 35–42, https://doi.org/10.3189/172756411795931688, 2011.
Richter-Menge, J. A. and Jones, K. F.: The tensile strength of first-year
sea ice, J. Glaciol., 39, 609–618, https://doi.org/10.3189/S0022143000016506,
1993.
Sammis, C. G. and Ashby, M. F.: The failure of brittle porous solids under
compressive stress states, Acta Metall., 34, 511–526,
https://doi.org/10.1016/0001-6160(86)90087-8, 1986.
Schijve, J.: Fatigue of Structures and Materials, 2nd edn., Springer
Netherlands, 2009.
Schulson, E. M. and Duval, P.: Creep and Fracture of Ice, Cambridge
University Press, Cambridge, 2009.
Schulson, E. M., Kuehn, G. A., Jones, D. A., and Fifolt, D. A.: The growth of
wing cracks and the brittle compressive failure of ice, Acta Metall. Mater.,
39, 2651–2655, https://doi.org/10.1016/0956-7151(91)90081-B, 1991.
Schulson, E. M., Qi, S., Melton, J. S., and Gratz, E. T.: Across-column
cracks and axial splits in S2 saline ice under compression, J. Glaciol.,
43, 411–414, https://doi.org/10.3189/s0022143000034997, 1997.
Shackleton, E. H.: South: The Story of Shackleton's Last Expedition,
1914–17, Macmillian, USA, 1982.
Squire, V. A.: Of ocean waves and sea-ice revisited, Cold Reg. Sci.
Technol., 49, 110–133, https://doi.org/10.1016/j.coldregions.2007.04.007, 2007.
Suresh, S.: Fatigue of Materials, Cambridge University Press, 1998.
Tabata, T. and Nohguchi, Y.: Failure of Sea Ice by Repeated Compression, in:
Physics and Mechanics of Ice, Springer, Berlin Heidelberg,
351–362, 1980.
Timco, G. W. and O'Brien, S.: Flexural strength equation for sea ice, Cold
Reg. Sci. Technol., 22, 285–298, https://doi.org/10.1016/0165-232X(94)90006-X, 1994.
Weeks, W. F.: On Sea Ice, University of Alaska Press, Fairbanks, 664 pp., 2010.
Weeks, W. F. and Ackley, S. F.: The Growth, Structure, and Properties of Sea
Ice, in: The Geophysics of Sea Ice, Springer US, Boston, MA, USA, 9–164,
1986.
Wei, M., Polojärvi, A., Cole, D. M., and Prasanna, M.: Strain response and energy dissipation of floating saline ice under cyclic compressive stress, The Cryosphere, 14, 2849–2867, https://doi.org/10.5194/tc-14-2849-2020, 2020.
Weiss, J. and Schulson, E. M.: Grain-boundary sliding and crack nucleation
in ice, Philos. Mag. A, 80, 279–300, https://doi.org/10.1080/01418610008212053,
2000.
Zhang, R., Wang, H., Fu, Q., Rasch, P. J., and Wang, X.: Unraveling driving
forces explaining significant reduction in satellite-inferred Arctic surface
albedo since the 1980s, P. Natl. Acad. Sci. USA, 116,
23947–23953, https://doi.org/10.1073/pnas.1915258116, 2019.
Short summary
It has been suggested that the observed sudden breakup of Arctic and Antarctic floating ice covers may be due to fatigue failure associated with cyclic loading from ocean swells that can penetrate deeply into an ice pack. To investigate this possibility, we measured the flexural strength of saline ice after cyclic loading. Contrary to expectations, we find that the flexural strength of saline ice increases upon cycling, similar to the behavior of laboratory-grown ice and natural lake ice.
It has been suggested that the observed sudden breakup of Arctic and Antarctic floating ice...