Articles | Volume 14, issue 10
https://doi.org/10.5194/tc-14-3425-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-3425-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variability in glacier albedo and links to annual mass balance for the gardens of Eden and Allah, Southern Alps, New Zealand
Angus J. Dowson
School of Geography, University of Otago, Dunedin, 9016, New Zealand
National School of Surveying, University of Otago, Dunedin, 9016, New
Zealand
Pascal Sirguey
CORRESPONDING AUTHOR
National School of Surveying, University of Otago, Dunedin, 9016, New
Zealand
Nicolas J. Cullen
School of Geography, University of Otago, Dunedin, 9016, New Zealand
Related authors
No articles found.
Morgan J. Bennet, Daniel G. Kingston, and Nicolas J. Cullen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3592, https://doi.org/10.5194/egusphere-2025-3592, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The temperature, precipitation and soil moisture drivers of extreme hot-dry compound events and rapid dry-to-wet seesaw events are modelled for New Zealand using tri- and bi-variate copulas (respectively), as well as a more conventional approach of analysing each variable separately. Copula-based direct modelling of the joint variation between these variables reveals that the conventional approach leads predominantly to the underestimation of return periods for these extreme events.
Tamara Pletzer, Jonathan P. Conway, Nicolas J. Cullen, Trude Eidhammer, and Marwan Katurji
Hydrol. Earth Syst. Sci., 28, 459–478, https://doi.org/10.5194/hess-28-459-2024, https://doi.org/10.5194/hess-28-459-2024, 2024
Short summary
Short summary
We applied a glacier and hydrology model in the McMurdo Dry Valleys (MDV) to model the start and duration of melt over a summer in this extreme polar desert. To do so, we found it necessary to prevent the drainage of melt into ice and optimize the albedo scheme. We show that simulating albedo (for the first time in the MDV) is critical to modelling the feedbacks of albedo, snowfall and melt in the region. This paper is a first step towards more complex spatial modelling of melt and streamflow.
Baptiste Vandecrux, Jason E. Box, Andreas P. Ahlstrøm, Signe B. Andersen, Nicolas Bayou, William T. Colgan, Nicolas J. Cullen, Robert S. Fausto, Dominik Haas-Artho, Achim Heilig, Derek A. Houtz, Penelope How, Ionut Iosifescu Enescu, Nanna B. Karlsson, Rebecca Kurup Buchholz, Kenneth D. Mankoff, Daniel McGrath, Noah P. Molotch, Bianca Perren, Maiken K. Revheim, Anja Rutishauser, Kevin Sampson, Martin Schneebeli, Sandy Starkweather, Simon Steffen, Jeff Weber, Patrick J. Wright, Henry Jay Zwally, and Konrad Steffen
Earth Syst. Sci. Data, 15, 5467–5489, https://doi.org/10.5194/essd-15-5467-2023, https://doi.org/10.5194/essd-15-5467-2023, 2023
Short summary
Short summary
The Greenland Climate Network (GC-Net) comprises stations that have been monitoring the weather on the Greenland Ice Sheet for over 30 years. These stations are being replaced by newer ones maintained by the Geological Survey of Denmark and Greenland (GEUS). The historical data were reprocessed to improve their quality, and key information about the weather stations has been compiled. This augmented dataset is available at https://doi.org/10.22008/FK2/VVXGUT (Steffen et al., 2022).
Marte G. Hofsteenge, Nicolas J. Cullen, Carleen H. Reijmer, Michiel van den Broeke, Marwan Katurji, and John F. Orwin
The Cryosphere, 16, 5041–5059, https://doi.org/10.5194/tc-16-5041-2022, https://doi.org/10.5194/tc-16-5041-2022, 2022
Short summary
Short summary
In the McMurdo Dry Valleys (MDV), foehn winds can impact glacial meltwater production and the fragile ecosystem that depends on it. We study these dry and warm winds at Joyce Glacier and show they are caused by a different mechanism than that found for nearby valleys, demonstrating the complex interaction of large-scale winds with the mountains in the MDV. We find that foehn winds increase sublimation of ice, increase heating from the atmosphere, and increase the occurrence and rates of melt.
Jonathan P. Conway, Jakob Abermann, Liss M. Andreassen, Mohd Farooq Azam, Nicolas J. Cullen, Noel Fitzpatrick, Rianne H. Giesen, Kirsty Langley, Shelley MacDonell, Thomas Mölg, Valentina Radić, Carleen H. Reijmer, and Jean-Emmanuel Sicart
The Cryosphere, 16, 3331–3356, https://doi.org/10.5194/tc-16-3331-2022, https://doi.org/10.5194/tc-16-3331-2022, 2022
Short summary
Short summary
We used data from automatic weather stations on 16 glaciers to show how clouds influence glacier melt in different climates around the world. We found surface melt was always more frequent when it was cloudy but was not universally faster or slower than under clear-sky conditions. Also, air temperature was related to clouds in opposite ways in different climates – warmer with clouds in cold climates and vice versa. These results will help us improve how we model past and future glacier melt.
Aubrey Miller, Pascal Sirguey, Simon Morris, Perry Bartelt, Nicolas Cullen, Todd Redpath, Kevin Thompson, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 2673–2701, https://doi.org/10.5194/nhess-22-2673-2022, https://doi.org/10.5194/nhess-22-2673-2022, 2022
Short summary
Short summary
Natural hazard modelers simulate mass movements to better anticipate the risk to people and infrastructure. These simulations require accurate digital elevation models. We test the sensitivity of a well-established snow avalanche model (RAMMS) to the source and spatial resolution of the elevation model. We find key differences in the digital representation of terrain greatly affect the simulated avalanche results, with implications for hazard planning.
Lucie A. Eberhard, Pascal Sirguey, Aubrey Miller, Mauro Marty, Konrad Schindler, Andreas Stoffel, and Yves Bühler
The Cryosphere, 15, 69–94, https://doi.org/10.5194/tc-15-69-2021, https://doi.org/10.5194/tc-15-69-2021, 2021
Short summary
Short summary
In spring 2018 in the alpine Dischma valley (Switzerland), we tested different industrial photogrammetric platforms for snow depth mapping. These platforms were high-resolution satellites, an airplane, unmanned aerial systems and a terrestrial system. Therefore, this study gives a general overview of the accuracy and precision of the different photogrammetric platforms available in space and on earth and their use for snow depth mapping.
Cited articles
Ackerman, S., Strabala, K., Menzel, W., Frey, R., Moeller, C., and Gumley,
L.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res.,
103, 32141–32157, https://doi.org/10.1029/1998JD200032, 1998.
Anderton, P. W. and Chinn, T. J.: Ivory Glacier, Representative Basin for
Glacial Region 1969–71, 1971–72, Technical Report No. 28, Ministry of Works,
Wellington, New Zealand, 1973.
Anderton, P. W. and Chinn, T. J.: Ivory Glacier, New Zealand, an I.H.D.
representative basin study. J. Glaciol., 20, 67–84, 1978.
Brun, F., Dumont, M., Wagnon, P., Berthier, E., Azam, M. F., Shea, J. M., Sirguey, P., Rabatel, A., and Ramanathan, Al.: Seasonal changes in surface albedo of Himalayan glaciers from MODIS data and links with the annual mass balance, The Cryosphere, 9, 341–355, https://doi.org/10.5194/tc-9-341-2015, 2015.
Casey, K. A., Polashenski, C. M., Chen, J., and Tedesco, M.: Impact of MODIS sensor calibration updates on Greenland Ice Sheet surface reflectance and albedo trends, The Cryosphere, 11, 1781–1795, https://doi.org/10.5194/tc-11-1781-2017, 2017.
Chinn, T. J. H.: Glacier Inventory of New Zealand, Technical report,
Institute of Geological and Nuclear Sciences, Dunedin, New Zealand, 1991.
Chinn, T. J. H.: Distribution of the glacial water resources in New Zealand,
J. Hydrol. (NZ), 40, 139–187, 2001.
Chinn, T., Fitzharris, B., Willsman, A., and Salinger, M.: Annual ice volume
changes 1976–2008 for the New Zealand Southern Alps, Global Planet. Change,
92–93, 105–118, https://doi.org/10.1016/j.gloplacha.2012.04.002, 2012.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A.,
Braithwaite, R. J., Jansson, P., Kaser, G., Möller, M., Nicholson, L.,
and Zemp, M.: Glossary of Glacier Mass Balance and Related Terms, Technical
report, UNESCO-IHP, Paris, France, 2011.
Columbus, J., Sirguey, P., and Tenzer, R.: A free, fully assessed 15m DEM
for New Zealand, Survey Quarterly, 66, 16–19, 2011.
Conway, J. P. and Cullen, N. J.: Cloud effects on surface energy and mass balance in the ablation area of Brewster Glacier, New Zealand, The Cryosphere, 10, 313–328, https://doi.org/10.5194/tc-10-313-2016, 2016.
Conway, J. P., Cullen, N. J., Spronken-Smith, R. A., and Fitzsimons, S. J.:
All-sky radiation over a glacier surface in the Southern Alps of New
Zealand: Characterizing cloud effects on incoming shortwave, longwave and
net radiation, Int. J. Climatol., 35, 699–713, https://doi.org/10.1002/joc.4014,
2015.
Cullen, N. J. and Conway, J. P.: A 22 month record of surface meteorology and energy balance from the ablation zone of Brewster Glacier, New Zealand, J. Glaciol., 61, 931–946, https://doi.org/10.3189/2015JoG15J004, 2015.
Cullen, N. J., Anderson, B., Sirguey, P., Stumm, D., Mackintosh, A., Conway,
J. P., Horgan, H. J., Dadic, R., Fitzsimons, S. J., and Lorrey, A.: An
11-year record of mass balance of Brewster Glacier, New Zealand, determined
using a geostatistical approach, J. Glaciol., 63, 199–217,
https://doi.org/10.1017/jog.2016.128, 2017.
Cullen, N. J., Gibson, P. B., Mölg, T., Conway, J. P., Sirguey, P., and
Kingston, D. G.: The influence of weather systems in controlling mass
balance in the Southern Alps of New Zealand, J. Geophys. Res.-Atmos., 124, 4514–4529, https://doi.org/10.1029/2018JD030052, 2019.
Davaze, L., Rabatel, A., Arnaud, Y., Sirguey, P., Six, D., Letreguilly, A., and Dumont, M.: Monitoring glacier albedo as a proxy to derive summer and annual surface mass balances from optical remote-sensing data, The Cryosphere, 12, 271–286, https://doi.org/10.5194/tc-12-271-2018, 2018.
Dumont, M., Sirguey, P., Arnaud, Y., and Six, D.: Monitoring spatial and temporal variations of surface albedo on Saint Sorlin Glacier (French Alps) using terrestrial photography, The Cryosphere, 5, 759–771, https://doi.org/10.5194/tc-5-759-2011, 2011.
Dumont, M., Gardelle, J., Sirguey, P., Guillot, A., Six, D., Rabatel, A., and Arnaud, Y.: Linking glacier annual mass balance and glacier albedo retrieved from MODIS data, The Cryosphere, 6, 1527–1539, https://doi.org/10.5194/tc-6-1527-2012, 2012.
Fitzharris, B., Lawson,W., and Owens, I.: Research on glaciers and snow in
New Zealand, Prog. Phys. Geog., 23, 469–500, https://doi.org/10.1177/030913339902300402, 1999.
Gillett, S. and Cullen, N. J.: Atmospheric controls on summer ablation over
Brewster Glacier, New Zealand, Int. J. Climatol., 31, 2033–2048,
https://doi.org/10.1002/joc.2216, 2011.
Greuell, W., Kohler, J., Obleitner, F., Glowacki, P., Melvold, K., Bernsen,
E., and Oerlemans, J.: Assessment of interannual variations in the surface
mass balance of 18 Svalbard glaciers from the Moderate Resolution Imaging
Spectroradiometer/Terra albedo product, J. Geophys. Res., 112, D07105,
https://doi.org/10.1029/2006JD007245, 2007.
Henderson, R. D. and Thompson, S. M.: Extreme rainfalls in the Southern Alps
of New Zealand, J. Hydrol. (NZ), 38, 309–330, 1999.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi,
Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau,
U., Morin, S., Orlove, B., and Steltzer H.: High Mountain Areas, in: IPCC Special
Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegriá, M., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., IPCC, in press, 2019.
Klok, E. J. and Oerlemans, J.: Modelled climate sensitivity of the mass
balance of Morteratschgletscher and its dependence on albedo
parameterization, Int. J. Climatol., 24, 231–245, https://doi.org/10.1002/joc.994,
2004.
Lyapustin, A., Wang, Y., Xiong, X., Meister, G., Platnick, S., Levy, R., Franz, B., Korkin, S., Hilker, T., Tucker, J., Hall, F., Sellers, P., Wu, A., and Angal, A.: Scientific impact of MODIS C5 calibration degradation and C6+ improvements, Atmos. Meas. Tech., 7, 4353–4365, https://doi.org/10.5194/amt-7-4353-2014, 2014.
Macara, G.:. Updated datasets for atmosphere and climate domain report,
Client report no. 2017054WN prepared for the Ministry for the Environment,
National Institute of Water and Atmospheric Research, National Institute of Water and Atmospheric Research Ltd., Wellington, available at: https://www.mfe.govt.nz/sites/default/files/media/Environmental reporting/NIWA datasets report.pdf (last access: 9 October 2020),
2017.
Mackintosh, A. N., Anderson, B. M., Lorrey, A. M., Renwick, J. A., Frei, P.,
and Dean, S. M.: Regional cooling caused recent New Zealand glacier advances
in a period of global warming, Nat. Commun., 8, 14202,
https://doi.org/10.1038/ncomms14202, 2017.
Masson, T., Dumont, M., Mura, M., Sirguey, P., Gascoin, S., Dedieu, J.-P.,
and Chanussot, J.: An Assessment of Existing Methodologies to Retrieve Snow
Cover Fraction from MODIS Data, Remote Sens., 10, 619,
https://doi.org/10.3390/rs10040619, 2018.
Mathieu, R., Chinn, T., and Fitzharris, B.: Detecting the equilibrium-line
altitudes of New Zealand glaciers using ASTER satellite images, New Zeal. J. Geol. Geop., 52, 209–222, https://doi.org/10.1080/00288300909509887,
2009.
MODIS Characterization Support Team (MCST)/MODIS Adaptive Processing System (MODAPS)/MODIS Science Data Support Team (SDST): MODIS Collection 6 Products, available at: https://modaps.modaps.eosdis.nasa.gov/services/about/products/c6/,
last access: 9 October 2020.
Oerlemans, J.: Climate sensitivity of Franz Josef Glacier, New Zealand, as
revealed by numerical modelling, Arctic Alpine Res., 29,
233–239, https://doi.org/10.2307/1552052, 1997.
Oerlemans, J., Giesen, R. H., and Van Den Broeke, M. R.: Retreating alpine
glaciers: Increased melt rates due to accumulation of dust (Vadret da
Morteratsch, Switzerland), J. Glaciol., 55, 729–736,
https://doi.org/10.3189/002214309789470969, 2009.
Olson, M. and Rupper, S.: Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography, The Cryosphere, 13, 29–40, https://doi.org/10.5194/tc-13-29-2019, 2019.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner,
A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S.,
Moholdt, G., Mölg, N., Paul, F., Radic, V., Rastner, P., Raup, B. H.,
Rich, J., Sharp, M. J., Andreassen, L. M., Bajracharya, S., Barrand, N.
E., Beedle, M. J., Berthier, E., Bhambri, R., Brown, I., Burgess, D. O.,
Burgess, E. W., Cawkwell, F., Chinn, T., Copland, L., Cullen, N. J., Davies,
B., Angelis, H. D., Fountain, A. G., Frey, H., Giffen, B. A., Glasser, N.
F., Gurney, S. D., Hagg, W., Hall, D. K., Haritashya, U. K., Hartmann, G.,
Herreid, S., Howat, I., Jiskoot, H., Khromova, T. E., Klein, A., Kohler, J.,
König, M., Kriegel, D., Kutuzov, S., Lavrentiev, I., Bris, R. L., Li,
X., Manley, W. F., Mayer, C., Menounos, B., Mercer, A., Mool, P., Negrete,
A., Nosenko, G., Nuth, C., Osmonov, A., Pettersson, R., Racoviteanu, A.,
Ranzi, R., Sarıkaya, M. A., Schneider, C., Sigurðsson, O., Sirguey,
P., Stokes, C. R., Wheate, R., Wolken, G. J., Wu, L. Z., and Wyatt, F. R.:
The Randolph Glacier Inventory: a globally complete inventory of glaciers,
J. Glaciol., 60, 537–552, https://doi.org/10.3189/2014JoG13J176, 2014.
Pope, E., Willis, I. C., Pope, A., Miles, E. S., Arnold, N. S., and Rees, W.
G.: Contrasting snow and ice albedos derived from MODIS, Landsat ETM+ and
airborne data from Langjökull, Iceland, Remote Sens. Environ.,
175, 183–195, https://doi.org/10.1016/j.rse.2015.12.051, 2016.
Purdie, H., Rack, W., Anderson, B., Kerr, T., Chinn, T.J., Owens, I., and
Linton, M.: The impact of extreme summer melt on net accumulation of an
avalanche fed glacier, as determined by ground-penetrating radar, Geogra. Ann. A, 97, 779–791,
https://doi.org/10.1111/geoa.12117, 2015.
Rabatel, A., Dedieu, J.-P., and Vincent, C.: Using remote-sensing data to
determine equilibrium-line altitude and mass-balance time series: validation
on three French glaciers, J. Glaciol., 51, 539–546,
https://doi.org/10.3189/172756505781829106, 2005.
Rabatel, A., Dedieu, J.-P., and Vincent, C.: Spatio-temporal changes in
glacier-wide mass balance quantified by optical remote sensing on 30
glaciers in the French Alps for the period 1983–2014, J. Glaciol.,
62, 1153–1166, https://doi.org/10.1017/jog.2016.113, 2016.
Rabatel, A., Sirguey, P., Drolon, V., Maisongrande, P., Arnaud, Y.,
Berthier, E., Davaze, L., Dedieu, J.-P., and Dumont, M.: Annual and Seasonal
Glacier-Wide Surface Balance Quantified from Changes in Glacier Surface
State: A Review on Existing Methods Using Optical Satellite Imagery, Remote
Sens., 9, 507, https://doi.org/10.3390/rs9050507, 2017.
Salinger, J., Renwick, J., Behrens, E., Mullan, B., Diamond, H. J., Sirguey,
P., Smith, R., Trought, M. C. T., Alexander, L. V., Cullen, N., Fitzharris,
B. B., Hepburn, C., Parker, A., and Sutton, P. J.: The unprecedented coupled
ocean-atmosphere summer heatwave in the New Zealand region 2017/18: drivers,
mechanisms and impacts, Environ. Res. Lett., 14, 044023,
https://doi.org/10.1088/1748-9326/ab012a, 2019a.
Salinger, M. J., Fitzharris, B. B., and Chinn, T.: Atmospheric circulation
and ice volume changes for the small and medium glaciers of New Zealand's
Southern Alps mountain range 1977/2018, Int. J. Climatol., 39,
4274–4287, https://doi.org/10.1002/joc.6072, 2019b.
Sayer, A. M., Hsu, N. C., Bettenhausen, C., Jeong, M.-J., and Meister, G.:
Effect of MODIS Terra radiometric calibration improvements on Collection 6
Deep Blue aerosol products: Validation and Terra/Aqua consistency, J. Geophys. Res.-Atmos., 120, 12157–12174, https://doi.org/10.1002/2015jd023878,
2015.
Sirguey, P.: Simple correction of multiple reflection effects in rugged
terrain, Int. J. Remote Sens., 30, 1075–1081, https://doi.org/10.1080/01431160802348101,
2009.
Sirguey, P., Mathieu, R., Arnaud, Y., Khan, M. M., and Chanussot, J.:
Improving MODIS spatial resolution for snow mapping using wavelet fusion and
ARSIS concept, IEEE Geosci. Remote S., 5, 78–82,
https://doi.org/10.1109/LGRS.2007.908884, 2008.
Sirguey, P., Mathieu, R., and Arnaud, Y.: Subpixel monitoring of the
seasonal snow cover with MODIS at 250 m spatial resolution in the Southern
Alps of New Zealand: methodology and accuracy assessment, Remote Sens.
Environ., 113, 160–181, https://doi.org/10.1016/j.rse.2008.09.008, 2009.
Sirguey, P., Still, H., Cullen, N. J., Dumont, M., Arnaud, Y., and Conway, J. P.: Reconstructing the mass balance of Brewster Glacier, New Zealand, using MODIS-derived glacier-wide albedo, The Cryosphere, 10, 2465–2484, https://doi.org/10.5194/tc-10-2465-2016, 2016.
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically
stable algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Optics, 27, 2502–2509,
https://doi.org/10.1364/AO.27.002502, 1988.
University of Otago – National School of Surveying:
NZSoSDEM v1.0 (22 Timaru 15 m DEM), available at: https://koordinates.com/layer/3748-22-timaru-15m-dem-nzsosdem-v10/,
last access: 9 October 2020.
Wardle, P.: Frequency of cloud cover on New Zealand mountains in relation to
subalpine vegetation, New Zeal. J. Bot., 24, 553–565, 1986.
Willsman, A. P., Chinn, T. J., and Macara, G.: New Zealand Glacier
Monitoring: End of summer snowline survey 2016, NIWA Client Report No:
2017167EI, National Institute of Water and Atmospheric Research Ltd., Wellington, 2017.
Willsman, A. P., Chinn, T. J., and Macara, G.: New Zealand Glacier
Monitoring: End of summer snowline survey 2017, NIWA Client Report No:
2018176EI, National Institute of Water and Atmospheric Research Ltd., Wellington, 2018.
Wolfe, R. E., Roy, D. P., and Vermote, E.: MODIS land data storage,
gridding, and compositing methodology: Level 2 Grid, IEEE T. Geosci. Remote, 36, 1324–1338, https://doi.org/10.1109/36.701082, 1998.
Zemp, M., Hoelzle, M., and Haeberli, W.: Six decades of glacier mass-balance
observations: A review of the worldwide monitoring network, Ann. Glaciol., 50, 101–111, https://doi.org/10.3189/172756409787769591, 2009.
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M.,
Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B.,
Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Casassa, G.,
Cobos, G., Dávila, L. R., Delgado Granados, H., Demuth, M. N., Espizua,
L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O.,
Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V.,
Portocarrero, C. A., Prinz, R., Sangewar, C. V., Severskiy, I.,
Sigurðsson, O., Soruco, A., Usubaliev, R., and Vincent, C.: Historically
unprecedented global glacier decline in the early 21st century, J. Glaciol.,
61, 745–762, https://doi.org/10.3189/2015jog15j017, 2015.
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J.,
Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I.,
Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global
glacier mass changes and their contributions to sea-level rise from 1961 to
2016, Nature, 568, 382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019.
Zhang, Z., Jiang, L., Liu, L., Sun, Y., and Wang, H.: Annual glacier-wide
mass balance (2000–2016) of the interior Tibetan plateau reconstructed from
MODIS albedo products, Remote Sens., 10, 1031, https://doi.org/10.3390/rs10071031,
2018.
Short summary
Satellite observations over 19 years are used to characterise the spatial and temporal variability of surface albedo across the gardens of Eden and Allah, two of New Zealand’s largest ice fields. The variability in response of individual glaciers reveals the role of topographic setting and suggests that glaciers in the Southern Alps do not behave as a single climatic unit. There is evidence that the timing of the minimum surface albedo has shifted to later in the summer on 10 of the 12 glaciers.
Satellite observations over 19 years are used to characterise the spatial and temporal...