Articles | Volume 14, issue 9
https://doi.org/10.5194/tc-14-2941-2020
https://doi.org/10.5194/tc-14-2941-2020
Brief communication
 | 
10 Sep 2020
Brief communication |  | 10 Sep 2020

Brief Communication: Mesoscale and submesoscale dynamics in the marginal ice zone from sequential synthetic aperture radar observations

Igor E. Kozlov, Evgeny V. Plotnikov, and Georgy E. Manucharyan

Related authors

DERIVING INTERNAL WAVE PHASE SPEED IN THE ARCTIC OCEAN FROM SEQUENTIAL SPACEBORNE SAR OBSERVATIONS
I. E. Kozlov and T. V. Mikhaylichenko
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 169–174, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-169-2023,https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-169-2023, 2023

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Novel methods to study sea ice deformation, linear kinematic features and coherent dynamic clusters from imaging remote sensing data
Polona Itkin
The Cryosphere, 19, 1135–1151, https://doi.org/10.5194/tc-19-1135-2025,https://doi.org/10.5194/tc-19-1135-2025, 2025
Short summary
Snow depth estimation on leadless landfast ice using Cryo2Ice satellite observations
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
The Cryosphere, 19, 325–346, https://doi.org/10.5194/tc-19-325-2025,https://doi.org/10.5194/tc-19-325-2025, 2025
Short summary
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Impact assessment of snow thickness, sea ice density and water density in CryoSat-2-derived sea ice thickness
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere, 18, 5985–6004, https://doi.org/10.5194/tc-18-5985-2024,https://doi.org/10.5194/tc-18-5985-2024, 2024
Short summary
Pan-Arctic sea ice concentration from SAR and passive microwave
Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner
The Cryosphere, 18, 5277–5300, https://doi.org/10.5194/tc-18-5277-2024,https://doi.org/10.5194/tc-18-5277-2024, 2024
Short summary

Cited articles

Bulczak, A. I., Bacon, S., Naveira Garabato, A. C., Ridout, A., Sonnewald, M. J., and Laxon, S. W.: Seasonal variability of sea surface height in the coastal waters and deep basins of the Nordic Seas, Geophys. Res. Lett., 42, 113–120, https://doi.org/10.1002/2014GL061796, 2015. 
Chen, W.: Nonlinear inverse model for velocity estimation from an image sequence, J. Geophys. Res., 116, 06015, https://doi.org/10.1029/2010JC006924, 2011. 
Emery, W. J., Thomas, A. C., Collins, M. J., Crawford, W. R., and Mackas, D. L.: An objective method for computing advective surface velocities from sequential infrared satellite images, J. Geophys. Res., 91, 12865–12878, https://doi.org/10.1029/JC091iC11p12865, 1986. 
Hall, R. T. and Rothrock, D. A.: Sea ice displacement from Seasat synthetic aperture radar, J. Geophys. Res., 86, 11078–11082, https://doi.org/10.1029/JC086iC11p11078, 1981. 
Johannessen, J. A., Johannessen, O. M., Svendsen, E., Shuchman, R., Manley, T., Campbell, W. J., Josberger, E. G., Sandven, S., Gascard, J. C., Olaussen, T., Davidson, K., and Van Leer, J.: Mesoscale eddies in the Fram Strait marginal ice zone during the 1983 and 1984 Marginal Ice Zone Experiments, J. Geophys. Res.-Oceans, 92, 6754–6772, https://doi.org/10.1029/JC092iC07p06754, 1987. 
Download
Short summary
Here we demonstrate a recently emerged opportunity to retrieve high-resolution surface current velocities from sequential spaceborne radar images taken over low-concentration ice regions of polar oceans. Such regularly available data uniquely resolve complex surface ocean dynamics even at small scales and can be used in operational applications to assess and predict transport and distribution of biogeochemical substances and pollutants in ice-covered waters.
Share