Articles | Volume 14, issue 8
The Cryosphere, 14, 2673–2686, 2020
https://doi.org/10.5194/tc-14-2673-2020
The Cryosphere, 14, 2673–2686, 2020
https://doi.org/10.5194/tc-14-2673-2020

Research article 21 Aug 2020

Research article | 21 Aug 2020

Clouds damp the radiative impacts of polar sea ice loss

Ramdane Alkama et al.

Related authors

Past and future drought in Northwestern Algeria: the Beni Bahdel Dam catchment
Senna Bouabdelli, Ayoub Zeroual, Mohamed Meddi, Fateh Djelloul, and Ramdane Alkama
Proc. IAHS, 383, 315–318, https://doi.org/10.5194/piahs-383-315-2020,https://doi.org/10.5194/piahs-383-315-2020, 2020
Short summary
Evaluation of air–soil temperature relationships simulated by land surface models during winter across the permafrost region
Wenli Wang, Annette Rinke, John C. Moore, Duoying Ji, Xuefeng Cui, Shushi Peng, David M. Lawrence, A. David McGuire, Eleanor J. Burke, Xiaodong Chen, Bertrand Decharme, Charles Koven, Andrew MacDougall, Kazuyuki Saito, Wenxin Zhang, Ramdane Alkama, Theodore J. Bohn, Philippe Ciais, Christine Delire, Isabelle Gouttevin, Tomohiro Hajima, Gerhard Krinner, Dennis P. Lettenmaier, Paul A. Miller, Benjamin Smith, Tetsuo Sueyoshi, and Artem B. Sherstiukov
The Cryosphere, 10, 1721–1737, https://doi.org/10.5194/tc-10-1721-2016,https://doi.org/10.5194/tc-10-1721-2016, 2016
Short summary

Related subject area

Discipline: Sea ice | Subject: Climate Interactions
Analyzing links between simulated Laptev Sea sea ice and atmospheric conditions over adjoining landmasses using causal-effect networks
Zoé Rehder, Anne Laura Niederdrenk, Lars Kaleschke, and Lars Kutzbach
The Cryosphere, 14, 4201–4215, https://doi.org/10.5194/tc-14-4201-2020,https://doi.org/10.5194/tc-14-4201-2020, 2020
Short summary

Cited articles

Abe, M., Nozawa, T., Ogura, T., and Takata, K.: Effect of retreating sea ice on Arctic cloud cover in simulated recent global warming, Atmos. Chem. Phys., 16, 14343–14356, https://doi.org/10.5194/acp-16-14343-2016, 2016. 
Arzel, O., Fichefet, T., and Goosse, H.: Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs, Ocean Model., 12, 401–415, https://doi.org/10.1016/J.OCEMOD.2005.08.002, 2006. 
Boeke, R. C. and Taylor, P. C.: Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming, Nature Comm., 9, 5017, https://doi.org/10.1038/s41467-018-07061-9, 2018. 
Boeke, R. C. and Taylor, P. C.: Evaluation of the Arctic surface radiation budget in CMIP5 models, J. Geophys. Res., 121, 8525–8548, https://doi.org/10.1002/2016JD025099, 2016. 
Boisvert, L. N. and Stroeve, J. C.: The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder, Geophys. Res. Lett., 42, 4439–4446, https://doi.org/10.1002/2015GL063775, 2015. 
Download
Short summary
The amount of solar energy absorbed by Earth is believed to strongly depend on clouds. Here, we investigate this relationship using satellite data and 32 climate models, showing that this relationship holds everywhere except over polar seas, where an increased reflection by clouds corresponds to an increase in absorbed solar radiation at the surface. This interplay between clouds and sea ice reduces by half the increase of net radiation at the surface that follows the sea ice retreat.