Articles | Volume 13, issue 5
https://doi.org/10.5194/tc-13-1495-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-1495-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear
Baptiste Journaux
CORRESPONDING AUTHOR
Department of Earth and Space Sciences, University of Washington, NASA Astrobiology
Institute, Seattle, USA
Université Grenoble Alpes, CNRS, IRD, G-INP, IGE, 38000 Grenoble, France
Thomas Chauve
Université Grenoble Alpes, CNRS, IRD, G-INP, IGE, 38000 Grenoble, France
PGP, Department of Geoscience, University of Oslo, Oslo, Norway
Maurine Montagnat
CORRESPONDING AUTHOR
Université Grenoble Alpes, CNRS, IRD, G-INP, IGE, 38000 Grenoble, France
Andrea Tommasi
Géosciences Montpellier, Université de Montpellier/CNRS, 34095 Montpellier, France
Fabrice Barou
Géosciences Montpellier, Université de Montpellier/CNRS, 34095 Montpellier, France
David Mainprice
Géosciences Montpellier, Université de Montpellier/CNRS, 34095 Montpellier, France
Léa Gest
Université Grenoble Alpes, CNRS, IRD, G-INP, IGE, 38000 Grenoble, France
Related authors
No articles found.
Hafiz U. Rehman, Takanori Kagoshima, Naoto Takahata, Yuji Sano, Fabrice Barou, David Mainprice, and Hiroshi Yamamoto
Eur. J. Mineral., 35, 1079–1090, https://doi.org/10.5194/ejm-35-1079-2023, https://doi.org/10.5194/ejm-35-1079-2023, 2023
Short summary
Short summary
Zircon preserves geologic rock history. Electron backscatter diffraction (EBSD) analysis is useful to visualize deformed domains in zircons. Zircons from the Himalayan high-pressure eclogites were analzyed for EBSD to identify intra-grain plastic deformation. The U–Pb isotope age dating, using Nano-SIMS, showed that plastic deformation likely affects the geochronological records. For geologically meaningful results, it is necessary to identify undisturbed domains in zircon via EBSD.
Valentin Basch, Martyn R. Drury, Oliver Plumper, Eric Hellebrand, Laura Crispini, Fabrice Barou, Marguerite Godard, and Elisabetta Rampone
Eur. J. Mineral., 33, 463–477, https://doi.org/10.5194/ejm-33-463-2021, https://doi.org/10.5194/ejm-33-463-2021, 2021
Short summary
Short summary
This paper investigates the possibility for melts to migrate within extensively deformed crystals and assesses the impact of this intracrystalline melt percolation on the chemical composition of the deformed crystal. We here document that the presence of melt within a crystal greatly enhances chemical diffusive re-equilibration between the percolating melt and the mineral and that such a process occurring at crystal scale can impact the large-scale composition of the oceanic lithosphere.
Jai Chowdhry Beeman, Léa Gest, Frédéric Parrenin, Dominique Raynaud, Tyler J. Fudge, Christo Buizert, and Edward J. Brook
Clim. Past, 15, 913–926, https://doi.org/10.5194/cp-15-913-2019, https://doi.org/10.5194/cp-15-913-2019, 2019
Short summary
Short summary
Atmospheric CO2 was likely an important amplifier of global-scale orbitally-driven warming during the last deglaciation. However, the mechanisms responsible for the rise in CO2, and the coherent rise in Antarctic isotopic temperature records, are under debate. Using a stochastic method, we detect variable lags between coherent changes in Antarctic temperature and CO2. This implies that the climate mechanisms linking the two records changed or experienced modulations during the deglaciation.
Jilu Li, Jose A. Vélez González, Carl Leuschen, Ayyangar Harish, Prasad Gogineni, Maurine Montagnat, Ilka Weikusat, Fernando Rodriguez-Morales, and John Paden
The Cryosphere, 12, 2689–2705, https://doi.org/10.5194/tc-12-2689-2018, https://doi.org/10.5194/tc-12-2689-2018, 2018
Short summary
Short summary
Ice properties inferred from multi-polarization measurements can provide insight into ice strain, viscosity, and ice flow. The Center for Remote Sensing of Ice Sheets used a ground-based radar for multi-channel and multi-polarization measurements at the NEEM site. This paper describes the radar system, antenna configurations, data collection, and processing and analysis of this data set. Comparisons between the radar observations, simulations, and ice core fabric data are in very good agreement.
Thomas Chauve, Maurine Montagnat, Cedric Lachaud, David Georges, and Pierre Vacher
Solid Earth, 8, 943–953, https://doi.org/10.5194/se-8-943-2017, https://doi.org/10.5194/se-8-943-2017, 2017
Short summary
Short summary
For the first time, digital image correlation was used to follow strain field development and evolution during micro-cracking, at the ductile-to-brittle transition in polycrystalline ice.
Owing to the high-temperature conditions of the tests, dynamic recrystallization mechanisms (nucleation and sub-grain rotation) efficiently participate in the stress redistribution during and after crack opening, and even lead to local crack closure.
Léa Gest, Frédéric Parrenin, Jai Chowdhry Beeman, Dominique Raynaud, Tyler J. Fudge, Christo Buizert, and Edward J. Brook
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-71, https://doi.org/10.5194/cp-2017-71, 2017
Revised manuscript has not been submitted
Short summary
Short summary
In this manuscript, we place the atmospheric CO2 and Antarctic temperature records onto a common age scale during the last deglaciation. Moreover, we evaluate the phase relationship between those two records in order to discuss possible climatic and carbon cycle scenarios. Indeed, this phase relationship is central to determine the role of the former in past (and therefore future) climatic variations. This scientific problem was even discussed by some policy makers (e.g., in the USA senate).
Agnès Maurel, Jean-François Mercier, and Maurine Montagnat
The Cryosphere, 10, 3063–3070, https://doi.org/10.5194/tc-10-3063-2016, https://doi.org/10.5194/tc-10-3063-2016, 2016
Short summary
Short summary
Crystallographic texture evolution with depth along ice cores can be evaluated using borehole sonic logging measurements. These measurements provide the velocities of elastic waves that depend on the ice polycrystal anisotropy and can further be related to the ice texture. To do so, elastic velocities need to be inverted from a modeling approach that relate elastic velocities to ice texture. The present paper presents a critical analysis of the different methods used for the inversion.
M. Montagnat, N. Azuma, D. Dahl-Jensen, J. Eichler, S. Fujita, F. Gillet-Chaulet, S. Kipfstuhl, D. Samyn, A. Svensson, and I. Weikusat
The Cryosphere, 8, 1129–1138, https://doi.org/10.5194/tc-8-1129-2014, https://doi.org/10.5194/tc-8-1129-2014, 2014
V. Baptiste and A. Tommasi
Solid Earth, 5, 45–63, https://doi.org/10.5194/se-5-45-2014, https://doi.org/10.5194/se-5-45-2014, 2014
Related subject area
Discipline: Other | Subject: Rheology
The temperature change shortcut: effects of mid-experiment temperature changes on the deformation of polycrystalline ice
Melting and fragmentation laws from the evolution of two large Southern Ocean icebergs estimated from satellite data
Lisa Craw, Adam Treverrow, Sheng Fan, Mark Peternell, Sue Cook, Felicity McCormack, and Jason Roberts
The Cryosphere, 15, 2235–2250, https://doi.org/10.5194/tc-15-2235-2021, https://doi.org/10.5194/tc-15-2235-2021, 2021
Short summary
Short summary
Ice sheet and ice shelf models rely on data from experiments to accurately represent the way ice moves. Performing experiments at the temperatures and stresses that are generally present in nature takes a long time, and so there are few of these datasets. Here, we test the method of speeding up an experiment by running it initially at a higher temperature, before dropping to a lower target temperature to generate the relevant data. We show that this method can reduce experiment time by 55 %.
Nicolas Bouhier, Jean Tournadre, Frédérique Rémy, and Rozenn Gourves-Cousin
The Cryosphere, 12, 2267–2285, https://doi.org/10.5194/tc-12-2267-2018, https://doi.org/10.5194/tc-12-2267-2018, 2018
Short summary
Short summary
The evolution of two large Southern Ocean icebergs, in terms of area and thickness, are used to study the melting and fragmentation laws of icebergs. The area and thickness are estimated by the mean of satellite images and radar altimeter data. Two classical formulations of melting are tested and a fragmentation law depending on the sea temperature and iceberg velocity is proposed and tested. The size distribution of the pieces generated by fragmentation is also estimated.
Cited articles
Alley, R. B.: Fabrics in polar ice sheets: development and prediction,
Science, 240, 493–495, https://doi.org/10.1126/science.240.4851.493, 1988. a
Alley, R. B.: Flow-law hypotheses for ice-sheet modeling, J. Glaciol., 38,
245–256, https://doi.org/10.3189/S0022143000003658, 1992. a
Augenstein, C. and Burg, J.-P.: Natural annealing of dynamically
recrystallised quartzite fabrics: Example from the Cévennes, SE
French Massif Central, J. Struct. Geol., 33, 244–254,
https://doi.org/10.1016/j.jsg.2010.10.008, 2011. a
Bachmann, F., Hielscher, R., and Schaeben, H.: Texture Analysis with MTEX –
Free and Open Source Software Toolbox, Sol. St. Phen., 160, 63–68,
https://doi.org/10.4028/www.scientific.net/SSP.160.63, 2010. a, b
Bachmann, F., Hielscher, R., and Schaeben, H.: Grain detection from 2d and 3d
EBSD data – Specification of the MTEX algorithm, Ultramicroscopy, 111,
1720–1733, https://doi.org/10.1016/j.ultramic.2011.08.002, 2011. a, b
Blackman, D. K., Boyce, D. E., Castelnau, O., Dawson, P. R., and Laske, G.:
Effects of crystal preferred orientation on upper-mantle flow near plate
boundaries: rheologic feedbacks and seismic anisotropy, Geophys. J. Int.,
210, 1481–1493, https://doi.org/10.1093/gji/ggx251, 2017. a
Bons, P. D., Jansen, D., Mundel, F., Bauer, C. C., Binder, T., Eisen, O.,
Jessell, M. W., Llorens, M.-G., Steinbach, F., Steinhage, D., and Weikusat,
I.: Converging flow and anisotropy cause large-scale folding in Greenland's
ice sheet, Nat. Commun., 7, 11427, https://doi.org/10.1038/ncomms11427, 2016. a
Boudier, F. and Coleman, R. G.: Cross section through the peridotite in the
Samail Ophiolite, southeastern Oman Mountains, J. Geophys. Res., 86,
2573–2592, https://doi.org/10.1029/JB086iB04p02573, 1981. a
Budd, W. F., Warner, R. C., Jacka, T. H., Li, J., and Treverrow, A.: Ice flow
relations for stress and strain-rate components from combined shear and
compression laboratory experiments, J. Glaciol., 59, 374–392,
https://doi.org/10.3189/2013JoG12J106, 2013. a, b
Buiron, D., Chappellaz, J., Stenni, B., Frezzotti, M., Baumgartner, M.,
Capron, E., Landais, A., Lemieux-Dudon, B., Masson-Delmotte, V., Montagnat,
M., Parrenin, F., and Schilt, A.: TALDICE-1 age scale of the Talos Dome deep
ice core, East Antarctica, Clim. Past, 7, 1–16, https://doi.org/10.5194/cp-7-1-2011,
2011. a
Burg, J. P., Wilson, C. J. L., and Mitchell, J. C.: Dynamic recrystallization
and fabric development during the simple shear deformation of ice, J. Struct.
Geol., 8, 857–870, https://doi.org/10.1016/0191-8141(86)90031-3, 1986. a, b, c, d
Cassard, D., Nicolas, A., Rabinovitch, M., Moutte, J., Leblanc, M., and
Prinzhofer, A.: Structural classification of chromite pods in southern New
Caledonia, Econ. Geol., 76, 805–831, https://doi.org/10.2113/gsecongeo.76.4.805, 1981. a
Castelnau, O., Duval, P., Lebensohn, R. A., and Canova, G. R.: Viscoplastic
modeling of texture development in polycrystalline ice with a self-consistent
approach: Comparison with bound estimates, J. Geophys. Res., 101,
13851–13868, https://doi.org/10.1029/96JB00412, 1996. a, b
Castelnau, O., Canova, G. R., Lebensohn, R. A., and Duval, P.: Modelling
viscoplastic behavior of anisotropic polycrystalline ice with a
self-consistent approach, Acta Mater., 45, 4823–4834,
https://doi.org/10.1016/S1359-6454(97)00098-0, 1997. a
Chauve, T., Montagnat, M., and Vacher, P.: Strain field evolution during
dynamic recrystallization nucleation; A case study on ice, Acta Mater.,
101, 116–124, https://doi.org/10.1016/j.actamat.2015.08.033, 2015. a
Chauve, T., Montagnat, M., Barou, F., Hidas, K., Tommasi, A., and Mainprice,
D.: Investigation of nucleation processes during dynamic recrystallization of
ice using cryo-EBSD, Philos. T. R. Soc. A, 375, 20150345,
https://doi.org/10.1098/rsta.2015.0345, 2017a. a, b
Chauve, T., Montagnat, M., Piazolo, S., Journaux, B., Wheeler, J., Barou, F.,
Mainprice, D., and Tommasi, A.: Non-basal dislocations should be accounted
for in simulating ice mass flow, Earth Planet. Sc. Lett., 473, 247–255,
https://doi.org/10.1016/j.epsl.2017.06.020, 2017b. a, b, c, d, e, f, g, h, i, j, k
Cuffey, K. and Paterson, W. S. B.: The Physics of Glaciers, 4th edn.,
Academic Press, Cambridge, MA, USA,
2010. a
Dahl-Jensen, D., Thorsteinsson, T., Alley, R., and Shoji, H.: Flow properties
of the ice from the Greenland Ice Core Project ice core: The reason
for folds?, J. Geophys. Res., 102, 26831–26840, https://doi.org/10.1029/97JC01266,
1997. a
De La Chapelle, S., Castelnau, O., Lipenkov, V., and Duval, P.: Dynamic
recrystallization and texture development in ice as revealed by the study of
deep ice cores in Antarctica and Greenland, J. Geophys. Res., 103,
5091–5105, https://doi.org/10.1029/97JB02621, 1998. a
Demouchy, S., Mainprice, D., Tommasi, A., Couvy, H., Barou, F., Frost, D. J.,
and Cordier, P.: Forsterite to wadsleyite phase transformation under shear
stress and consequences for the Earth's mantle transition zone, Phys. Earth
Planet. In., 184, 91–104, https://doi.org/10.1016/j.pepi.2010.11.001, 2011. a
Duval, P.: Creep and recrystallization of polycrystalline ice, B. Mineral.,
102, 80–85, 1979. a
Duval, P., Ashby, M. F., and Anderman, I.: Rate-controlling processes in the
creep of polycrystalline ice, J. Phys. Chem., 87, 4066–4074,
https://doi.org/10.1021/j100244a014, 1983. a, b, c, d
Etchecopar, A.: A plane kinematic model of progressive deformation in a
polycrystalline aggregate, Tectonophysics, 39, 121–139,
https://doi.org/10.1016/0040-1951(77)90092-0, 1977. a, b, c
Faria, S. H., Weikusat, I., and Azuma, N.: The microstructure of polar ice.
Part II: State of the art, J. Struct. Geol., 61, 21–49,
https://doi.org/10.1016/j.jsg.2013.11.003, 2014a. a
Faria, S. H., Weikusat, I., and Azuma, N.: The microstructure of polar ice.
Part II: State of the art, J. Struct. Geol., 61, 21–49,
https://doi.org/10.1016/j.jsg.2013.11.003, 2014b. a
Fernicola, V., Rosso, L., and Giovannini, M.: Investigation of the Ice–Water
Vapor Equilibrium Along the Sublimation Line, Int. J. Thermophysics, 33,
1363–1373, https://doi.org/10.1007/s10765-011-1128-2, 2011. a
Gillet-Chaulet, F., Gagliardini, O., Meyssonnier, J., Zwinger, T., and
Ruokolainen, J.: Flow-induced anisotropy in polar ice and related ice-sheet
flow modelling, J. Non-Newtonian Fluid, 134, 33–43,
https://doi.org/10.1016/j.jnnfm.2005.11.005, 2006. a
Gow, A. J. and Williamson, T.: Rheological implications of the internal
structure and crystal fabrics of the West Antarctic ice sheet as revealed
by deep core drilling at Byrd Station, GSA Bulletin, 87, 1665–1677,
https://doi.org/10.1130/0016-7606(1976)87<1665:RIOTIS>2.0.CO;2, 1976. a
Grennerat, F., Montagnat, M., Castelnau, O., Vacher, P., Moulinec, H.,
Suquet, P., and Duval, P.: Experimental characterization of the intragranular
strain field in columnar ice during transient creep, Acta Mater., 60,
3655–3666, https://doi.org/10.1016/j.actamat.2012.03.025, 2012. a
Heilbronner, R. and Barrett, S.: Image Analysis in Earth Sciences, in:
Microstructures and Textures of Earth Materials, Springer-Verlag Berlin
Heidelberg, https://doi.org/10.1007/978-3-642-10343-8, 2014. a
Heilbronner, R. and Tullis, J.: The effect of static annealing on
microstructures and crystallographic preferred orientations of quartzites
experimentally deformed in axial compression and shear, Geological Society,
London, Special Publications, 200, 191–218,
https://doi.org/10.1144/GSL.SP.2001.200.01.12, 2002. a
Hielscher, R. and Schaeben, H.: A novel pole figure inversion method:
specification of the MTEX algorithm, J. Appl. Crystallogr., 41, 1024–1037,
https://doi.org/10.1107/S0021889808030112, 2008. a, b
Higgie, K. and Tommasi, A.: Feedbacks between deformation and melt
distribution in the crust–mantle transition zone of the Oman ophiolite,
Earth Planet. Sc. Lett., 359-360, 61–72, https://doi.org/10.1016/j.epsl.2012.10.003,
2012. a
Hudleston, P. J.: Progressive Deformation and Development of Fabric
Across Zones of Shear in Glacial Ice, in: Energetics of
Geological Processes, edited by: Saxena, S. K., Bhattacharji, S.,
Annersten, H., and Stephansson, O., Springer Berlin Heidelberg, 121–150,
https://doi.org/10.1007/978-3-642-86574-9_7, 1977. a, b, c, d
Hudleston, P. J.: Structures and fabrics in glacial ice: A review, J. Struct.
Geol., 81, 1–27, https://doi.org/10.1016/j.jsg.2015.09.003, 2015. a, b
Ismaïl, W. B. and Mainprice, D.: An olivine fabric database: an overview
of upper mantle fabrics and seismic anisotropy, Tectonophysics, 296,
145–157, https://doi.org/10.1016/S0040-1951(98)00141-3, 1998. a
Journaux, B., Chauve, T., Montagnat, M., Tommasi, A., Barou, F., Mainprice,
D., and Gest, L.: Recrystallization processes, microstructure and texture
evolution in polycrystalline ice during high temperature simple shear,
PANGAEA, https://doi.org/10.1594/PANGAEA.901009, 2019. a
Kamb, W. B.: Ice petrofabric observations from Blue Glacier, Washington,
in relation to theory and experiment, J. Geophys. Res., 64, 1891–1909,
https://doi.org/10.1029/JZ064i011p01891, 1959. a, b
Li, J., Jacka, T. H., and Budd, W. F.: Strong single-maximum crystal fabrics
developed in ice undergoing shear with unconstrained normal deformation, Ann.
Glaciol., 30, 88–92, https://doi.org/10.3189/172756400781820615, 2000. a, b, c
Lipenkov, V. Y., Barkov, N. I., Duval, P., and Pimienta, P.: Crystalline
Texture of the 2083 m Ice Core at Vostok Station, Antarctica, J.
Glaciol., 35, 392–398, https://doi.org/10.3189/S0022143000009321, 1989. a
Llorens, M.-G., Griera, A., Bons, P. D., Lebensohn, R. A., Evans, L. A.,
Jansen, D., and Weikusat, I.: Full-field predictions of ice dynamic
recrystallisation under simple shear conditions, Earth Planet. Sc. Lett.,
450, 233–242, https://doi.org/10.1016/j.epsl.2016.06.045, 2016. a
Llorens, M.-G., Griera, A., Steinbach, F., Bons, P. D., Gomez-Rivas, E.,
Jansen, D., Roessiger, J., Lebensohn, R. A., and Weikusat, I.: Dynamic
recrystallization during deformation of polycrystalline ice: insights from
numerical simulations, Philos. T. R. Soc. A, 375, 20150346,
https://doi.org/10.1098/rsta.2015.0346, 2017. a
Ma, Y., Gagliardini, O., Ritz, C., Gillet-Chaulet, F., Durand, G., and
Montagnat, M.: Enhancement factors for grounded ice and ice shelves inferred
from an anisotropic ice-flow model, J. Glaciol., 56, 805–812,
https://doi.org/10.3189/002214310794457209, 2010. a
Mansuy, P., Philip, A., and Meyssonnier, J.: Identification of strain
heterogeneities arising during deformation of ice, Ann. Glaciol., 30,
121–126, https://doi.org/10.3189/172756400781820651, 2000. a
Martín, C., Gudmundsson, G. H., Pritchard, H. D., and Gagliardini, O.:
On the effects of anisotropic rheology on ice flow, internal structure, and
the age-depth relationship at ice divides, J. Geophys. Res., 114, F04001,
https://doi.org/10.1029/2008JF001204, 2009. a
Montagnat, M., Blackford, J. R., Piazolo, S., Arnaud, L., and Lebensohn,
R. A.: Measurements and full-field predictions of deformation heterogeneities
in ice, Earth Planet. Sc. Lett., 305, 153–160,
https://doi.org/10.1016/j.epsl.2011.02.050, 2011. a, b
Montagnat, M., Castelnau, O., Bons, P. D., Faria, S. H., Gagliardini, O.,
Gillet-Chaulet, F., Grennerat, F., Griera, A., Lebensohn, R. A., Moulinec,
H., Roessiger, J., and Suquet, P.: Multiscale modeling of ice deformation
behavior, J. Struct. Geol., 61, 78–108, https://doi.org/10.1016/j.jsg.2013.05.002,
2014. a
Montagnat, M., Chauve, T., Barou, F., Tommasi, A., Beausir, B., and
Fressengeas, C.: Analysis of Dynamic Recrystallization of Ice from EBSD
Orientation Mapping, Front. Earth Sci., 3, 81,
https://doi.org/10.3389/feart.2015.00081, 2015. a
Park, Y., Ree, J.-H., and Kim, S.: Lattice preferred orientation in
deformed-then-annealed material: observations from experimental and natural
polycrystalline aggregates, Int. J. Earth Sci., 90, 127–135,
https://doi.org/10.1007/s005310000163, 2001. a
Paterson, M. S. and Olgaard, D. L.: Rock deformation tests to large shear
strains in torsion, J. Struct. Geol., 22, 1341–1358,
https://doi.org/10.1016/S0191-8141(00)00042-0, 2000. a, b
Peternell, M., Russell-Head, D., and Wilson, C.: A technique for recording
polycrystalline structure and orientation during in situ deformation cycles
of rock analogues using an automated fabric analyser, J. Microsc., 242,
181–188, https://doi.org/10.1111/j.1365-2818.2010.03456.x, 2011. a
Piazolo, S., Montagnat, M., and Blackford, J. R.: Sub-structure
characterization of experimentally and naturally deformed ice using
cryo-EBSD, J. Microsc., 230, 509–519,
https://doi.org/10.1111/j.1365-2818.2008.02014.x, 2008. a, b, c
Piazolo, S., Montagnat, M., Grennerat, F., Moulinec, H., and Wheeler, J.:
Effect of local stress heterogeneities on dislocation fields: Examples from
transient creep in polycrystalline ice, Acta Mater., 90, 303–309,
https://doi.org/10.1016/j.actamat.2015.02.046,
2015. a
Qi, C., Goldsby, D. L., and Prior, D. J.: The down-stress transition from
cluster to cone fabrics in experimentally deformed ice, Earth Planet. Sc.
Lett., 471, 136–147, https://doi.org/10.1016/j.epsl.2017.05.008, 2017. a, b, c
Qi, C., Prior, D. J., Craw, L., Fan, S., Llorens, M.-G., Griera, A., Negrini,
M., Bons, P. D., and Goldsby, D. L.: Crystallographic preferred orientations
of ice deformed in direct-shear experiments at low temperatures, The
Cryosphere, 13, 351–371, https://doi.org/10.5194/tc-13-351-2019, 2019. a, b, c, d, e, f, g, h, i
Randle, V.: Microtexture determination and its applications, The Institute of
Materials, London, UK, 1992. a
Russell-Head, D. S. and Wilson, C. J. L.: Automated fabric analyser system
for quartz and ice, Geological Society of Australia Abstracts, 64, 159–159,
1999. a
Signorelli, J. and Tommasi, A.: Modeling the effect of subgrain rotation
recrystallization on the evolution of olivine crystal preferred orientations
in simple shear, Earth Planet. Sc. Lett., 430, 356–366,
https://doi.org/10.1016/j.epsl.2015.08.018, 2015. a, b
Swift, W.: Length Changes in Metals Under Torsional Overstrain, Engineering,
163, 253 pp., 1947. a
Thorsteinsson, T. and Waddington, E. D.: Folding in strongly anisotropic
layers near ice-sheet centers, Ann. Glaciol., 35, 480–486,
https://doi.org/10.3189/172756402781816708, 2002. a
Tommasi, A. and Vauchez, A.: Heterogeneity and anisotropy in the lithospheric
mantle, Tectonophysics, 661, 11–37, https://doi.org/10.1016/j.tecto.2015.07.026, 2015. a, b
Tommasi, A., Knoll, M., Vauchez, A., Signorelli, J. W., Thoraval, C., and
Logé, R.: Structural reactivation in plate tectonics controlled by
olivine crystal anisotropy, Nat. Geosci., 2, 423–427, https://doi.org/10.1038/ngeo528,
2009.
a
Treverrow, A., Budd, W. F., Jacka, T. H., and Warner, R. C.: The tertiary
creep of polycrystalline ice: experimental evidence for stress-dependent
levels of strain-rate enhancement, J. Glaciol., 58, 301–314,
https://doi.org/10.3189/2012JoG11J149, 2012. a
Urai, J. L., Means, W. D., and Lister, G. S.: Dynamic recrystallization of
minerals. Mineral and rock deformation, American Geophysical Union
Geophysical Monograph Series 36, 166–199, 1986. a
Weikusat, I., Miyamoto, A., Faria, S. H., Kipfstuhl, S., Azuma, N., and
Hondoh, T.: Subgrain boundaries in Antarctic ice quantified by X-ray Laue
diffraction, J. Glaciol., 57, 111–120, https://doi.org/10.3189/002214311795306628,
2011. a, b, c
Wenk, H.-R. and Tomé, C. N.: Modeling dynamic recrystallization of
olivine aggregates deformed in simple shear, J. Geophys. Res., 104,
25513–25527, https://doi.org/10.1029/1999JB900261, 1999. a
Wheeler, J., Mariani, E., Piazolo, S., Prior, D., Trimby, P., and Drury, M.:
The weighted Burgers vector: a new quantity for constraining dislocation
densities and types using electron backscatter diffraction on 2D sections
through crystalline materials, J. Microsc., 233, 482–494,
https://doi.org/10.1111/j.1365-2818.2009.03136.x, 2009. a, b, c
Wilson, C. J. L. and Peternell, M.: Ice deformed in compression and simple
shear: control of temperature and initial fabric, J. Glaciol., 58, 11–22,
https://doi.org/10.3189/2012JoG11J065, 2012. a, b, c
Wilson, C. J. L., Burg, J. P., and Mitchell, J. C.: The origin of kinks in
polycrystalline ice, Tectonophysics, 127, 27–48,
https://doi.org/10.1016/0040-1951(86)90077-6, 1986. a
Wilson, C. J. L., Luzin, V., Piazolo, S., Peternell, M., and Hammes, D.:
Experimental deformation of deuterated ice in 3D and 2D: identification of
grain-scale processes, Proceedings of the Royal Society of Victoria, 127,
99–104, http://www.publish.csiro.au/paper/RS15011, 2015. a
Wright, S. I., Nowell, M. M., and Field, D. P.: A review of strain analysis
using electron backscatter diffraction, Microsc. Microanal., 17, 316–329,
https://doi.org/10.1017/S1431927611000055, 2011. a, b
Short summary
Ice mechanics is an important tool to better predict the response of glaciers or polar ice sheets to climate variations.
Nevertheless our current predictive abilities are limited as the microscale mechanisms responsible for ice creep are poorly identified.
We show in this study, using state-of-the-art experimental techniques, which recrystallization processes control ice deformation. This will allow realistic simulations, necessary to predict the long-term effects on ice landmasses.
Ice mechanics is an important tool to better predict the response of glaciers or polar ice...