Articles | Volume 13, issue 5
https://doi.org/10.5194/tc-13-1495-2019
https://doi.org/10.5194/tc-13-1495-2019
Research article
 | Highlight paper
 | 
27 May 2019
Research article | Highlight paper |  | 27 May 2019

Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear

Baptiste Journaux, Thomas Chauve, Maurine Montagnat, Andrea Tommasi, Fabrice Barou, David Mainprice, and Léa Gest

Related authors

Electron backscatter diffraction analysis combined with NanoSIMS U–Pb isotope data reveal intra-grain plastic deformation in zircon and its effects on U–Pb age: examples from Himalayan eclogites, Pakistan
Hafiz U. Rehman, Takanori Kagoshima, Naoto Takahata, Yuji Sano, Fabrice Barou, David Mainprice, and Hiroshi Yamamoto
Eur. J. Mineral., 35, 1079–1090, https://doi.org/10.5194/ejm-35-1079-2023,https://doi.org/10.5194/ejm-35-1079-2023, 2023
Short summary
Intracrystalline melt migration in deformed olivine revealed by trace element compositions and polyphase solid inclusions
Valentin Basch, Martyn R. Drury, Oliver Plumper, Eric Hellebrand, Laura Crispini, Fabrice Barou, Marguerite Godard, and Elisabetta Rampone
Eur. J. Mineral., 33, 463–477, https://doi.org/10.5194/ejm-33-463-2021,https://doi.org/10.5194/ejm-33-463-2021, 2021
Short summary
Antarctic temperature and CO2: near-synchrony yet variable phasing during the last deglaciation
Jai Chowdhry Beeman, Léa Gest, Frédéric Parrenin, Dominique Raynaud, Tyler J. Fudge, Christo Buizert, and Edward J. Brook
Clim. Past, 15, 913–926, https://doi.org/10.5194/cp-15-913-2019,https://doi.org/10.5194/cp-15-913-2019, 2019
Short summary
Multi-channel and multi-polarization radar measurements around the NEEM site
Jilu Li, Jose A. Vélez González, Carl Leuschen, Ayyangar Harish, Prasad Gogineni, Maurine Montagnat, Ilka Weikusat, Fernando Rodriguez-Morales, and John Paden
The Cryosphere, 12, 2689–2705, https://doi.org/10.5194/tc-12-2689-2018,https://doi.org/10.5194/tc-12-2689-2018, 2018
Short summary
Strain field evolution at the ductile-to-brittle transition: a case study on ice
Thomas Chauve, Maurine Montagnat, Cedric Lachaud, David Georges, and Pierre Vacher
Solid Earth, 8, 943–953, https://doi.org/10.5194/se-8-943-2017,https://doi.org/10.5194/se-8-943-2017, 2017
Short summary

Related subject area

Discipline: Other | Subject: Rheology
The temperature change shortcut: effects of mid-experiment temperature changes on the deformation of polycrystalline ice
Lisa Craw, Adam Treverrow, Sheng Fan, Mark Peternell, Sue Cook, Felicity McCormack, and Jason Roberts
The Cryosphere, 15, 2235–2250, https://doi.org/10.5194/tc-15-2235-2021,https://doi.org/10.5194/tc-15-2235-2021, 2021
Short summary
Melting and fragmentation laws from the evolution of two large Southern Ocean icebergs estimated from satellite data
Nicolas Bouhier, Jean Tournadre, Frédérique Rémy, and Rozenn Gourves-Cousin
The Cryosphere, 12, 2267–2285, https://doi.org/10.5194/tc-12-2267-2018,https://doi.org/10.5194/tc-12-2267-2018, 2018
Short summary

Cited articles

Alley, R. B.: Fabrics in polar ice sheets: development and prediction, Science, 240, 493–495, https://doi.org/10.1126/science.240.4851.493, 1988. a
Alley, R. B.: Flow-law hypotheses for ice-sheet modeling, J. Glaciol., 38, 245–256, https://doi.org/10.3189/S0022143000003658, 1992. a
Augenstein, C. and Burg, J.-P.: Natural annealing of dynamically recrystallised quartzite fabrics: Example from the Cévennes, SE French Massif Central, J. Struct. Geol., 33, 244–254, https://doi.org/10.1016/j.jsg.2010.10.008, 2011. a
Bachmann, F., Hielscher, R., and Schaeben, H.: Texture Analysis with MTEX – Free and Open Source Software Toolbox, Sol. St. Phen., 160, 63–68, https://doi.org/10.4028/www.scientific.net/SSP.160.63, 2010. a, b
Bachmann, F., Hielscher, R., and Schaeben, H.: Grain detection from 2d and 3d EBSD data – Specification of the MTEX algorithm, Ultramicroscopy, 111, 1720–1733, https://doi.org/10.1016/j.ultramic.2011.08.002, 2011. a, b
Download
Short summary
Ice mechanics is an important tool to better predict the response of glaciers or polar ice sheets to climate variations. Nevertheless our current predictive abilities are limited as the microscale mechanisms responsible for ice creep are poorly identified. We show in this study, using state-of-the-art experimental techniques, which recrystallization processes control ice deformation. This will allow realistic simulations, necessary to predict the long-term effects on ice landmasses.