Articles | Volume 12, issue 12
https://doi.org/10.5194/tc-12-3791-2018
https://doi.org/10.5194/tc-12-3791-2018
Research article
 | 
30 Nov 2018
Research article |  | 30 Nov 2018

A new surface meltwater routing model for use on the Greenland Ice Sheet surface

Kang Yang, Laurence C. Smith, Leif Karlstrom, Matthew G. Cooper, Marco Tedesco, Dirk van As, Xiao Cheng, Zhuoqi Chen, and Manchun Li

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Kang Yang on behalf of the Authors (20 Nov 2018)  Author's response   Manuscript 
ED: Publish as is (20 Nov 2018) by Michiel van den Broeke
AR by Kang Yang on behalf of the Authors (20 Nov 2018)
Download
Short summary
A high-resolution spatially lumped hydrologic surface routing model is proposed to simulate meltwater transport over bare ice surfaces. In an ice-covered catchment, meltwater is routed by slow interfluve flow (~10−3–10−4 m s−1) followed by fast open-channel flow (~10−1 m s−1). Seasonal evolution of supraglacial stream-river networks substantially alters the magnitude and timing of moulin discharge with implications for subglacial hydrology and ice dynamics.