Articles | Volume 10, issue 6
Research article
01 Dec 2016
Research article |  | 01 Dec 2016

Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland Ice Sheet

Johan Nilsson, Alex Gardner, Louise Sandberg Sørensen, and Rene Forsberg

Abstract. A new methodology for retrieval of glacier and ice sheet elevations and elevation changes from CryoSat-2 data is presented. Surface elevations and elevation changes determined using this approach show significant improvements over ESA's publicly available CryoSat-2 elevation product (L2 Baseline-B). The results are compared to near-coincident airborne laser altimetry from NASA's Operation IceBridge and seasonal height amplitudes from the Ice, Cloud, and Elevation Satellite (ICESat).

Applying this methodology to CryoSat-2 data collected in interferometric synthetic aperture mode (SIN) over the high-relief regions of the Greenland Ice Sheet we find an improvement in the root-mean-square error (RMSE) of 27 and 40 % compared to ESA's L2 product in the derived elevation and elevation changes, respectively. In the interior part of the ice sheet, where CryoSat-2 operates in low-resolution mode (LRM), we find an improvement in the RMSE of 68 and 55 % in the derived elevation and elevation changes, respectively. There is also an 86 % improvement in the magnitude of the seasonal amplitudes when compared to amplitudes derived from ICESat data. These results indicate that the new methodology provides improved tracking of the snow/ice surface with lower sensitivity to changes in near-surface dielectric properties.

To demonstrate the utility of the new processing methodology we produce elevations, elevation changes, and total volume changes from CryoSat-2 data for the Greenland Ice Sheet during the period January 2011 to January 2015. We find that the Greenland Ice Sheet decreased in volume at a rate of 289 ± 20 km3a−1, with high interannual variability and spatial heterogeneity in rates of loss. This rate is 65 km3a−1 more negative than rates determined from ESA's L2 product, highlighting the importance of CryoSat-2 processing methodologies.

Short summary
In this study we present a new processing methodology for retrieving surface elevations and elevation changes over glaciated terrain from CryoSat-2 data. The new methodology has been shown to be less sensitive to changes in near-surface dielectric properties and provides improved elevation and elevation change retrievals. This methodology has been applied to the Greenland Ice Sheet to provide an updated volume change estimate for the period of 2011 to 2015.