An analytical model for wind-driven Arctic summer sea ice drift
Abstract. The authors present an analytical model for wind-driven free drift of sea ice that allows for an arbitrary mixture of ice and open water. The model includes an ice–ocean boundary layer with an Ekman spiral, forced by transfers of wind-input momentum both through the sea ice and directly into the open water between the ice floes. The analytical tractability of this model allows efficient calculation of the ice velocity provided that the surface wind field is known and that the ocean geostrophic velocity is relatively weak. The model predicts that variations in the ice thickness or concentration should substantially modify the rotation of the velocity between the 10 m winds, the sea ice, and the ocean.
Compared to recent observational data from the first ice-tethered profiler with a velocity sensor (ITP-V), the model is able to capture the dependencies of the ice speed and the wind/ice/ocean turning angles on the wind speed. The model is used to derive responses to intensified southerlies on Arctic summer sea ice concentration, and the results are shown to compare closely with satellite observations.