Articles | Volume 10, issue 1
https://doi.org/10.5194/tc-10-179-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-10-179-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Simulated high-latitude soil thermal dynamics during the past 4 decades
UJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de
l'Environnement (LGGE), 38041 Grenoble, France
Laboratoire des Sciences du Climat et de l'Environnement (LSCE),
CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France
Laboratoire des Sciences du Climat et de l'Environnement (LSCE),
CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France
G. Krinner
UJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de
l'Environnement (LGGE), 38041 Grenoble, France
T. Wang
UJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de
l'Environnement (LGGE), 38041 Grenoble, France
Laboratoire des Sciences du Climat et de l'Environnement (LSCE),
CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France
I. Gouttevin
UJF–Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de
l'Environnement (LGGE), 38041 Grenoble, France
Irstea, UR HHLY, 5 rue de la Doua, CS 70077, 69626 Villeurbanne CEDEX,
France
A. D. McGuire
US Geological Survey, Alaska Cooperative Fish and Wildlife Research
Unit, University of Alaska Fairbanks, Fairbanks, AK, USA
D. Lawrence
National Center for Atmospheric Research, Boulder, CO, USA
Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK
Department of Civil and Environmental Engineering, University of
Washington, Seattle, WA, USA
B. Decharme
CNRM-GAME, Unitémixte de recherche CNRS/Meteo-France (UMR 3589),
42 avCoriolis, 31057 Toulouse CEDEX, France
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
A. MacDougall
School of Earth and Ocean Sciences, University of Victoria, Victoria,
BC, Canada
College of Global Change and Earth System Science, Beijing Normal
University, Beijing, China
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
K. Saito
Research Institute for Global Change, Japan Agency for Marine-Earth
Science and Technology, Yokohama, Kanagawa, Japan
Department of Physical Geography and Ecosystem Science, Lund
University, Sölvegatan 12, 223 62 Lund, Sweden
R. Alkama
CNRM-GAME, Unitémixte de recherche CNRS/Meteo-France (UMR 3589),
42 avCoriolis, 31057 Toulouse CEDEX, France
T. J. Bohn
School of Earth and Space Exploration, Arizona State University,
Tempe, AZ, USA
C. Delire
CNRM-GAME, Unitémixte de recherche CNRS/Meteo-France (UMR 3589),
42 avCoriolis, 31057 Toulouse CEDEX, France
T. Hajima
Research Institute for Global Change, Japan Agency for Marine-Earth
Science and Technology, Yokohama, Kanagawa, Japan
College of Global Change and Earth System Science, Beijing Normal
University, Beijing, China
D. P. Lettenmaier
Department of Civil and Environmental Engineering, University of
Washington, Seattle, WA, USA
P. A. Miller
Department of Physical Geography and Ecosystem Science, Lund
University, Sölvegatan 12, 223 62 Lund, Sweden
J. C. Moore
College of Global Change and Earth System Science, Beijing Normal
University, Beijing, China
B. Smith
Department of Physical Geography and Ecosystem Science, Lund
University, Sölvegatan 12, 223 62 Lund, Sweden
T. Sueyoshi
National Institute of Polar Research, Tachikawa, Tokyo, Japan
Research Institute for Global Change, Japan Agency for Marine-Earth
Science and Technology, Yokohama, Kanagawa, Japan
Viewed
Total article views: 4,701 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 09 Apr 2015)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,730 | 1,726 | 245 | 4,701 | 598 | 235 | 253 |
- HTML: 2,730
- PDF: 1,726
- XML: 245
- Total: 4,701
- Supplement: 598
- BibTeX: 235
- EndNote: 253
Total article views: 3,680 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Jan 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,286 | 1,178 | 216 | 3,680 | 356 | 210 | 222 |
- HTML: 2,286
- PDF: 1,178
- XML: 216
- Total: 3,680
- Supplement: 356
- BibTeX: 210
- EndNote: 222
Total article views: 1,021 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 09 Apr 2015)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
444 | 548 | 29 | 1,021 | 242 | 25 | 31 |
- HTML: 444
- PDF: 548
- XML: 29
- Total: 1,021
- Supplement: 242
- BibTeX: 25
- EndNote: 31
Cited
18 citations as recorded by crossref.
- ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation M. Guimberteau et al. 10.5194/gmd-11-121-2018
- Contrasting effects of CO<sub>2</sub> fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO<sub>2</sub> exchange A. Bastos et al. 10.5194/acp-19-12361-2019
- Testing the capability of ORCHIDEE land surface model to simulate Arctic ecosystems: Sensitivity analysis and site‐level model calibration S. Dantec‐Nédélec et al. 10.1002/2016MS000860
- Effects of short-term variability of meteorological variables on soil temperature in permafrost regions C. Beer et al. 10.5194/tc-12-741-2018
- Soil moisture and hydrology projections of the permafrost region – a model intercomparison C. Andresen et al. 10.5194/tc-14-445-2020
- Model simulations of arctic biogeochemistry and permafrost extent are highly sensitive to the implemented snow scheme in LPJ-GUESS A. Pongracz et al. 10.5194/bg-18-5767-2021
- Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios Y. Chen et al. 10.5194/esd-14-55-2023
- Dataset of soil hydraulic parameters in the Yellow River Basin based on in situ deep sampling Y. Tong et al. 10.1038/s41597-024-03576-7
- The European mountain cryosphere: a review of its current state, trends, and future challenges M. Beniston et al. 10.5194/tc-12-759-2018
- Impact of measured and simulated tundra snowpack properties on heat transfer V. Dutch et al. 10.5194/tc-16-4201-2022
- Non-uniform seasonal warming regulates vegetation greening and atmospheric CO 2 amplification over northern lands Z. Li et al. 10.1088/1748-9326/aae9ad
- Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change A. McGuire et al. 10.1073/pnas.1719903115
- Reliable Future Climatic Projections for Sustainable Hydro-Meteorological Assessments in the Western Lake Erie Basin S. Mehan et al. 10.3390/w11030581
- Carbon dioxide release from retrogressive thaw slumps in Siberia C. Beer et al. 10.1088/1748-9326/acfdbb
- Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205) Y. Xi et al. 10.5194/gmd-17-4727-2024
- Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region J. Xia et al. 10.1002/2016JG003384
- Simulating soil organic carbon in yedoma deposits during the Last Glacial Maximum in a land surface model D. Zhu et al. 10.1002/2016GL068874
- Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009 A. McGuire et al. 10.1002/2016GB005405
15 citations as recorded by crossref.
- ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation M. Guimberteau et al. 10.5194/gmd-11-121-2018
- Contrasting effects of CO<sub>2</sub> fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO<sub>2</sub> exchange A. Bastos et al. 10.5194/acp-19-12361-2019
- Testing the capability of ORCHIDEE land surface model to simulate Arctic ecosystems: Sensitivity analysis and site‐level model calibration S. Dantec‐Nédélec et al. 10.1002/2016MS000860
- Effects of short-term variability of meteorological variables on soil temperature in permafrost regions C. Beer et al. 10.5194/tc-12-741-2018
- Soil moisture and hydrology projections of the permafrost region – a model intercomparison C. Andresen et al. 10.5194/tc-14-445-2020
- Model simulations of arctic biogeochemistry and permafrost extent are highly sensitive to the implemented snow scheme in LPJ-GUESS A. Pongracz et al. 10.5194/bg-18-5767-2021
- Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios Y. Chen et al. 10.5194/esd-14-55-2023
- Dataset of soil hydraulic parameters in the Yellow River Basin based on in situ deep sampling Y. Tong et al. 10.1038/s41597-024-03576-7
- The European mountain cryosphere: a review of its current state, trends, and future challenges M. Beniston et al. 10.5194/tc-12-759-2018
- Impact of measured and simulated tundra snowpack properties on heat transfer V. Dutch et al. 10.5194/tc-16-4201-2022
- Non-uniform seasonal warming regulates vegetation greening and atmospheric CO 2 amplification over northern lands Z. Li et al. 10.1088/1748-9326/aae9ad
- Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change A. McGuire et al. 10.1073/pnas.1719903115
- Reliable Future Climatic Projections for Sustainable Hydro-Meteorological Assessments in the Western Lake Erie Basin S. Mehan et al. 10.3390/w11030581
- Carbon dioxide release from retrogressive thaw slumps in Siberia C. Beer et al. 10.1088/1748-9326/acfdbb
- Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205) Y. Xi et al. 10.5194/gmd-17-4727-2024
3 citations as recorded by crossref.
- Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region J. Xia et al. 10.1002/2016JG003384
- Simulating soil organic carbon in yedoma deposits during the Last Glacial Maximum in a land surface model D. Zhu et al. 10.1002/2016GL068874
- Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009 A. McGuire et al. 10.1002/2016GB005405
Saved (preprint)
Discussed (final revised paper)
Latest update: 23 Nov 2024
Short summary
Soil temperature change is a key indicator of the dynamics of permafrost. Using nine process-based ecosystem models with permafrost processes, a large spread of soil temperature trends across the models. Air temperature and longwave downward radiation are the main drivers of soil temperature trends. Based on an emerging observation constraint method, the total boreal near-surface permafrost area decrease comprised between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr−1 from 1960 to 2000.
Soil temperature change is a key indicator of the dynamics of permafrost. Using nine...