Preprints
https://doi.org/10.5194/tc-2021-33
https://doi.org/10.5194/tc-2021-33

  04 Mar 2021

04 Mar 2021

Review status: this preprint is currently under review for the journal TC.

Automated detection and analysis of surface calving waves with a terrestrial radar interferometer at the front of Eqip Sermia, Greenland

Adrien Wehrlé, Martin P. Lüthi, Andrea Walter, Guillaume Jouvet, and Andreas Vieli Adrien Wehrlé et al.
  • Institute of Geography, University of Zurich, Zurich, Switzerland

Abstract. Glacier calving is a key dynamical process of the Greenland ice sheet and a major driver of its increasing mass loss. Calving waves, generated by the sudden detachment of ice from the glacier terminus, can reach tens of meters of height and provide very valuable insights to quantify calving activity. In this study, we present a new method for the detection of source location, timing and magnitude of calving waves using a terrestrial radar interferometer. This method was applied to 11500 one-minute interval acquisitions from Eqip Sermia, West Greenland, in July 2018. During seven days, more than 2000 calving waves were detected, including waves generated by submarine calving which are difficult to observe with other methods. Quantitative assessment with a Wave Power Index (WPI) yields a higher wave activity (+49 %) and higher temporally cumulated WPI (+34 %) in deep water than under shallow conditions. Subglacial meltwater plumes, occurring 2.3 times more often in the deep sector, increase WPI and the number of waves by a factor 1.8 and 1.3 respectively in the deep and shallow sector. We therefore explain the higher calving activity in the deep sector by a combination of more frequent meltwater plumes and more efficient calving enhancement linked with better connections to warm deep ocean water.

Adrien Wehrlé et al.

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on tc-2021-33', Surui Xie, 29 Mar 2021
  • RC2: 'Comment on tc-2021-33', Ryan Cassotto, 11 Jun 2021

Adrien Wehrlé et al.

Adrien Wehrlé et al.

Viewed

Total article views: 566 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
438 123 5 566 6 1
  • HTML: 438
  • PDF: 123
  • XML: 5
  • Total: 566
  • BibTeX: 6
  • EndNote: 1
Views and downloads (calculated since 04 Mar 2021)
Cumulative views and downloads (calculated since 04 Mar 2021)

Viewed (geographical distribution)

Total article views: 569 (including HTML, PDF, and XML) Thereof 569 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 29 Jul 2021
Download
Short summary
We developed a novel automated method for the detection and the quantification of ocean waves generated by glacier calving. This method was applied to data recorded with a terrestrial radar interferometer at Eqip Sermia, Greenland. Results show a high calving activity at the glacier front sector ending in deep water linked with more frequent meltwater plumes. This suggests that rising subglacial meltwater plumes strongly affect glacier calving in deep water, but weakly in shallow water.