Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Preprints
https://doi.org/10.5194/tc-2020-186
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-2020-186
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  04 Aug 2020

04 Aug 2020

Review status
This preprint is currently under review for the journal TC.

The tipping points and early-warning indicators for Pine Island Glacier, West Antarctica

Sebastian H. R. Rosier1, Ronja Reese2, Jonathan F. Donges2,3, Jan De Rydt1, G. Hilmar Gudmundsson1, and Ricarda Winkelmann2,4 Sebastian H. R. Rosier et al.
  • 1Department of Geography and Environmental Sciences, Northumbria University, Newcastle, UK
  • 2Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
  • 3Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, SE-10691 Stockholm, Sweden
  • 4University of Potsdam, Institute of Physics and Astronomy, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany

Abstract. Mass loss from the Antarctic Ice Sheet is the main source of uncertainty in projections of future sea-level rise, with important implications for coastal regions worldwide. Central to this is the marine ice sheet instability: once a critical threshold, or tipping point, is crossed, ice-internal dynamics can drive a self-amplifying retreat committing a glacier to irreversible, rapid and substantial ice loss. This process might have already been triggered in the Amundsen Sea region, where Pine Island and Thwaites glaciers dominate the current mass loss from Antarctica, but modelling and observational techniques have not been able to establish this rigorously, leading to divergent views on the future mass loss of the WAIS. Here, we aim at closing this knowledge gap by conducting a systematic investigation of the stability regime of Pine Island Glacier. To this end we show that early warning indicators robustly detect critical slowing for the marine ice sheet instability. We are thereby able to identify three distinct tipping points in response to increases in ocean-induced melt. The third and final event, triggered by an ocean warming of approximately 1.2 °C from the steady state model configuration, leads to a retreat of the entire glacier that could initiate a collapse of the West Antarctic Ice Sheet.

Sebastian H. R. Rosier et al.

Interactive discussion

Status: open (until 29 Sep 2020)
Status: open (until 29 Sep 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Sebastian H. R. Rosier et al.

Executable research compendia (ERC)

Úa ice-flow model G. Hilmar Gudmundsson https://doi.org/10.5281/zenodo.3706624

Sebastian H. R. Rosier et al.

Viewed

Total article views: 419 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
317 99 3 419 2 2
  • HTML: 317
  • PDF: 99
  • XML: 3
  • Total: 419
  • BibTeX: 2
  • EndNote: 2
Views and downloads (calculated since 04 Aug 2020)
Cumulative views and downloads (calculated since 04 Aug 2020)

Viewed (geographical distribution)

Total article views: 277 (including HTML, PDF, and XML) Thereof 276 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 23 Sep 2020
Publications Copernicus
Download
Short summary
Pine Island Glacier has contributed more to sea-level rise over the past decades than any other glacier in Antarctica. Ice-flow modelling studies have shown that it can undergo periods of rapid mass loss, but no study has shown that these future changes could cross a tipping point and therefore be effectively irreversible. Here, we assess the stability of Pine Island Glacier, quantifying the changes in ocean temperatures required to cross future tipping points using statistical methods.
Pine Island Glacier has contributed more to sea-level rise over the past decades than any other...
Citation