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Abstract. Snow Water Equivalent (SWE) is identified as the key element of the snowpack that impacts rivers’ streamflow

and water cycle. Both active and passive microwave remote sensing methods have been used to retrieve SWE, but there

does not currently exist a SWE product that provides useful estimates in mountainous terrain. Active sensors provide higher-

resolution observations, but the suitable radar frequencies and temporal repeat intervals have not been available until recently.

Interferometric Synthetic Aperture Radar (InSAR) has been shown to have the potential to estimate SWE change. In this study,5

we apply this technique to a long time series of 6-day temporal repeat Sentinel-1 data from the 2020-2021 winter. The retrievals

show statistically significant correlations both temporally and spatially with independent measurements of snow depth and

SWE. The Pearson correlation and RMSE between retrieved SWE change observations and in situ stations measurements are

0.8, and 0.93cm, respectively. The total retrieved SWE in the entire 2020-2021 time series shows SWE error less than 2cm

for the 9 in situ stations in the scene. Additionally, the retrieved SWE using Sentinel-1 data is well correlated with LIDAR10

snow depth data with correlation of more than 0.47. Low temporal coherence is identified as the main reason for degrading the

performance of SWE retrieval using InSAR data. Low temporal coherence also causes the degradation of phase unwrapping

algorithms.

1 Introduction

The seasonal snowpack provides water resources to billions of people worldwide (Barnett et al., 2005). Snow is the primary15

source of water for river channel discharge in middle-to-high latitude areas. Therefore, snow mass and snow cover has a

great impact on global and regional water cycles. Large scale mapping of snow water equivalent (SWE) with high resolution

is critical for many scientific and economics fields. SWE is defined as the depth of water which would be obtained if all

ice contained in the snow pack were melted. NASA SnowEx is a multi-year effort to improve SWE and snow surface energy

balance measurements and estimates. SWE has been identified as the key variable for terrestrial snow by the SnowEx campaign20

and NASA’s decadal survey.

Estimating SWE on a global scale with enough accuracy and resolution is still a challenge. Passive spaceborne sensors

based on the microwave emission of the snow pack (Takala et al., 2011; Kelly et al., 2003; Pulliainen and Hallikainen, 2001;

Kelly, 2009) have a coarse spatial resolution on the 10 kilometer-scale. The technique saturates for SWE deeper than 150mm,
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which makes their application in the mountains challenging. Nevertheless, passive microwave sensors represent the current25

state-of-the-art of SWE retrieval methods. These sensors are applied operationally to generate daily estimates of SWE globally

(Takala et al., 2011; Kelly et al., 2003), however many products such as GlobSnow mask out mountainous areas, due to the

saturation limit and resolution.

Airborne LIDAR has been successful in estimating snow depth (Painter and et al., 2016). However, clouds and limited

regional coverage are limiting factors for this method. This technique also needs a snow density model to estimate SWE from30

the LIDAR snow depth , and there currently is not a path to space for global snow depth mapping at the temporal resolution

required.

Active microwave sensors provide high resolution and global coverage. There has been many efforts in the last two decades

trying to estimate SWE or snow depth using active sensors mounted on a tower (Cui et al., 2016; Lemmetyinen et al., 2018;

Ruiz et al., 2022; Leinss et al., 2015), airborne (Marshall et al., 2021; Nagler et al., 2022), or spaceborne systems (Lievens et al.,35

2019; Liu et al., 2017; Conde et al., 2019; Dagurova et al., 2020; Eppler et al., 2022). Backscattered power from active sensors

is used to estimate SWE (Rott et al., 2010; Ulaby and Stiles, 1980; Cui et al., 2016; Nghiem and Tsai, 2001; Lievens et al.,

2019). A dual-band (X and Ku) SAR mission has been the focus of the European Space Agency (ESA) and Canadian Space

Agency (CSA) for SWE spaceborne measurements (Rott et al., 2010; Lemmetyinen et al., 2018). However, accurate a priori

characterization of snow micro-structural parameters is of primary importance in the accuracy of SWE retrieval algorithms40

using backscattered power (Lemmetyinen et al., 2018; Durand and Liu, 2012; Cui et al., 2016). The most common a priori

characterization used for SWE retrieval algorithms using backscattered power is grain radius. This has been done using passive

data; however, the methods are restricted to passive retrieval errors and also mismatch between active and passive resolutions.

The ratio of cross-pol to co-pol Sentinel-1 backscattered power has been used to estimate snow depth over mountainous re-

gions with deep snow (Lievens et al., 2019, 2022). Using Sentinel-1 backscattered power ratio is a unique approach showing45

the success of snow depth retrieval using the spaceborne radar time series data. However, the retrieval mostly works for deep

snow in mountainous regions. The radiative transfer physics at C-band for this method are still poorly understood. The co-polar

phase difference (CPD) between VV and HH polarization of X-band SAR acquisitions is used for estimating the depth of fresh

snow (Leinss et al., 2014).

Lightweight and portable Frequency Modulated Continuous Wave (FMCW) radar systems have been used to map snow pack50

properties (such as depth, SWE, and stratigraphy) rapidly over large distances and at high resolution (Marshall and Koh, 2008).

These sensors need a wide bandwidth for large distances of a spaceborne mission with high resolution. Due to limitation on

frequency bandwidth allocation of a spaceborne active sensor (Tao et al., 2019), FMCW systems cannot be used in spaceborne

missions for global coverage due to their wide bandwidth.

The phase change of specularly reflected signals in Signals of Opportunity (SoOp) is shown to be strongly dependent on55

SWE changes for dry snow (Yueh et al., 2017, 2021; Shah et al., 2017). The theory behind using SoOp for SWE retrieval is

similar to repeat pass interferometry that is explained in section 2. The advantage of this method is that the stratigraphy of

the snow has little impact on the SWE retrieval (Leinss et al., 2015; Yueh et al., 2017) similar to SWE retrieval explained in

section 2. Using the long wavelength signal at P-band in SoOp is very helpful for addressing the loss of temporal coherence and
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phase unwrapping challenges of this method. However, the phase sensitivity to SWE changes decreases at lower frequencies.60

There has been very limited data showing the success of this method at P-band. Achieving high resolution is another challenge

of this method. The phase change of specularly reflected signals in SoOp is dependent on snow depth change for wet snow

(Yueh et al., 2017, 2021; Shah et al., 2017).

As explained in details in next section, the phase difference between two SAR observations is proportional to changes in

SWE variation (∆SWE). We evaluated the performance of SWE retrieval using interferometry over Idaho. In part (A) of this65

study (the current paper), we used Sentinel-1 interferometric time series data over Idaho. In part (b), we will use Uninhabited

Aerial Vehicle Synthetic Aperture Radar (UAVSAR) interferometric time series data over Idaho to evaluate the performance

of this method. We show for the first time that SWE estimation using repeat pass interferometry performs well by using a long

time series of Sentinel-1 interferometric data in winter 2021. We explain this retrieval method in section 2. The details about

different data sets used in this study are discussed in section 3. Section 4 describes how we processed Sentinel-1 data and70

convert it to SWE. The retrieved SWE is compared with in situ and LIDAR data in section 5. This work shows for the first time

the success of SWE retrieval using a long time series spaceborne InSAR data.

2 Using Differential Interferometry to Estimate SWE

Differential SAR interferometry measurements have been used to detect small surface elevation changes over large areas with a

vertical accuracy of a few millimeters (Gabriel et al., 1989; Zebker et al., 1994). The measured phase difference is proportional75

and sensitive to changes in SWE variation (∆SWE) during the snow season (Guneriussen et al., 2001; H. Rott and Scheiber,

2003; Deeb et al., 2011; Leinss et al., 2015; Conde et al., 2019; Liu et al., 2017; Hui et al., 2016; Nagler et al., 2022; Eppler et al.,

2022; Dagurova et al., 2020; Marshall et al., 2021). The main advantage of this method is its simplicity and a reduction in nec-

essary a priori information.

The snow volume scattering affects the interferometric phase for very deep snow in Greenland at relatively high frequencies80

such as C-band (Oveisgharan and Zebker, 2007). However, for the terrestrial snow, the effect of volume scattering of dry snow

on the interferometric phase is very small compared to scattering from the ground at high frequencies. The snow refractive

index delays the echo received from the ground. The signal delay caused by refraction can be measured with differential radar

interferometry as (Guneriussen et al., 2001; Leinss et al., 2015):

∆φ=−2κi(cosθ−
√

ǫ− sin2 θ)∆d (1)85

where ∆φ,κi,∆d,θ, and ǫ are interferometric phase between two observation dates, incidence wavenumber, snow depth

change, incidence angle, and permittivity of the snow, respectively. The change in interferometric phase is used to calculate

∆SWE (Leinss et al., 2015; Conde et al., 2019; Liu et al., 2017; Nagler et al., 2022). Similar to the dual-pol. dual-freq. re-

trieval algorithm (Lemmetyinen et al., 2018; Cui et al., 2016), this technique relies on the dryness of snow in order to penetrate

all the way to the ground and the scattering from the snow layers and snow volume is minimized compared to snow-ground90

return (Oveisgharan et al., 2020).
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Using Envisat interferometric data to estimate SWE was not very successful mainly due to large temporal baseline and,

hence, low temporal coherence (Hui et al., 2016). A modified version of SWE estimation using InSAR is also introduced

(Eppler et al., 2022; Dagurova et al., 2020). The backscattering from the roughness in the ground and snow layers are combined

with interferometric phase to improve the accuracy (Dagurova et al., 2020). The sensitivity of the dry-snow refraction-induced95

InSAR phase to topographic variations is used to bypass the unwrapping problem (Eppler et al., 2022). Airborne data collected

over the Austrian Alps in 2021 showed good agreement between retrieved SWE using InSAR and mean in situ SWE. Root-

mean-square difference of 4.0 mm for a small snow storm of 14mm snow depth at C-band and 11.2mm for a big snow storm

of 66mm at L-band were observed (Nagler et al., 2022). The correlation of 0.76 was observed between the retrieved SWE

change using L-band UAVSAR differential interferometry between 2/1/2020 and 2/13/2020 and the collected LIDAR snow100

depth change between 2/1/2020 and 2/12/2020 over the open regions of Grand Mesa in dry snow conditions (Marshall et al.,

2021). SWE retrieval using Sentinel-1 interferometric data showed mean accuracy of 6mm over Finland for just two passes

(Conde et al., 2019).

All these studies have proven the potential of this method but were limited in time or space for data collection or validation.

In this study, we show the performance of SWE retrieval using a long time series of Sentinel-1 interferometric data in winter105

2021. This study shows for the first time that SWE estimation using repeat pass interferometry works well by validating the

retrieved value with a large number of in situ stations and two regional LIDAR snow depth maps.

With the recent SnowEx 2020 campaign using UAVSAR L-band differential interferometry data, Sentinel-1 C-band dif-

ferential interferometry, and future NASA-ISRO SAR (NISAR) L-band data, there will be more advances in the limitations

and capabilities of this method.110

2.1 Temporal Coherence

The received radar signals at two different times will be correlated with each other if the set of scatterers in the resolution cell

remain the same. However, the movement of the scatterers such as leaves and branches or sea ice particles decrease the tem-

poral coherence (Zebker and Villasenor, 1992; Kellndorfer et al., 2022; Lavalle et al., 2012). The loss of coherence between

the observations is one of the main limitations for SWE retrieval using differential interferometry. Methods such as using115

two frequencies or shorter revisit time are used to overcome these problems (Deeb et al., 2011; Leinss et al., 2015). Melting

and wind are the main reasons for low temporal coherence in snow (Leinss et al., 2015; Luzi et al., 2009). A medium mean

temporal coherence of 0.41 is observed at L-band between two winter seasons in shrub-lands with 10.2cm average snow

depth(Molan et al., 2018). Temporal coherence decreases with increasing frequency (Leinss et al., 2015; Nagler et al., 2022;

Kellndorfer et al., 2022; Ruiz et al., 2022). A median temporal coherence of about 0.5 is observed at 10.2 GHz and 16.8 GHz120

even after 60 days (Leinss et al., 2015). However, the spaceborne TerraSAR-X temporal coherence over snow at 9.65 GHz

reduces significantly in 11 days (Leinss et al., 2015). This is probably due to random phase drifts over time that cannot be es-

timated and corrected in a spaceborne system compared to a ground radar. Vegetation cover decreases the temporal coherence

significantly at high frequencies (Baduge et al., 2016; Kellndorfer et al., 2022; Ruiz et al., 2022). A tower-based fully polari-

metric InSAR studied the effect of air temperature, precipitation intensity, and wind on the temporal decorrelation at L-, S-, C-,125
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and X-bands (Ruiz et al., 2022). The temperature was shown to be the most critical variable affecting the temporal coherence

among other variables. Temperature above 0◦C reduced the temporal coherence drastically (Ruiz et al., 2022). On the other

hand snow cover has a thermal insulation effect on the ground and underlaying layers (Gu et al., 2019). The insulation increases

with the snow depth. Therefore, during the snow season we assume the ground remains frozen even when snow becomes wet.

Hence, temporal decoherence from the ground is negligible. Snow also SWE accumulation profile retrieval was successful for130

short temporal baselines and low frequencies in non-vegetated areas. However, the error increased for high frequencies and

long temporal baselines. The SWE profile retrieval using C-band data performs well using 12 hours and 1 day repeat-pass data.

The retrieval is poor using the 12-day repeat-pass data at C-band (Ruiz et al., 2022). 6-day repeat pass C-band data showed

good performance for small SWE changes but poor performance for large SWE changes between the interferometric pairs due

to phase ambiguity caused by large SWE change (Ruiz et al., 2022). The low temporal coherence and low penetration depth at135

frequencies higher than 10 GHz, make L- and C-band desirable frequencies for differential interferometry.

2.2 Relationship between ∆SWE and ∆φ

With some approximation to equation 1, Leinss et al. showed a linear relationship between the interferometric phase and SWE

change (Leinss et al., 2015). The approximation depends on the incidence angle of each pixel and the maximum expected

snow density. Here we try to make a more generalized approximation. The snow permittivity in equation 1 is dependent140

on snow density, ρ(g/cm3) , and relatively independent of signal wavelength. Following Leinss et al. (Leinss et al., 2015),

we use Matzler’s model (Mätzler, 1987) for calculating ǫ in equation 1 (ǫ(ρ) = 1+ 1.5995ρ+1.861ρ3 for ρ < 0.4 g
cm3 ; and

ǫ(ρ) = ((1− ρ
0.917 )+ 1.4759 ρ

0.917 )
3 for ρ >= 0.4 g

cm3 ). We can rewrite equation 1 as

∆φ=−2κiC(θ,ρ)
ρwater

ρ
∆SWE (2)

where C(θ,ρ) = cosθ−
√

ǫ(ρ)− sin2 θ. Note that the ǫ(ρ) and consequently C(θ,ρ) are unitless, ρwater = 1 g
cm3 , ∆SWE is145

in (m), and κi is in (1/m).

The blue and red lines in figure 1 (a) show C(θ,ρ) versus snow density for incidence angles equal to 0 and 80 degrees,

respectively. As seen in this figure, there is approximately a linear relationship between C and snow density. We fit a line to C

for different incidence angles as C(θ,ρ) =A(θ)× ρ for 0.15≤ ρ≤ 0.5 g
cm3 . As seen in figure 1(a), the line intercept is very

close to zero. Hence, we assume the line intercept is zero. The incidence angle mostly lies between zero and 80 for Sentinel-1150

data. The terrestrial snow density lies mostly between 0.15 and 0.5 g
cm3 . Therefore, we limit ourselves to incidence angle

between 0 and 80 and snow density between 0.15 and 0.45 g
cm3 in fitting a line to C. Figure 1 (b) shows A(θ) versus incidence

angle. By fitting a polynomial to A, we can write it as

A=−0.6784θ2+0.2899θ− 0.8473 (3)

We can rewrite the equation 1 as155

∆φ=−2κi(−0.6784θ2+0.2899θ− 0.8473) ˆ∆SWE (4)
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Figure 1(c) shows the ∆SWE−
ˆ∆SWE

∆SWE × 100 versus incidence angle for different snow densities. As seen in this figure, the

error in ∆SWE calculation using the approximation in equation 4 is less than 10% for incidence angles less than 70. We use

equation 4 for estimating ∆SWE using interferometric phase, ∆φ, for the rest of this study. Using one equation for the entire

Sentinel-1 frame makes the interferometric phase conversion to ∆SWE very convenient. However, we need to keep in mind160

that the approximation for lower dense snow has more than 10% error for incidence angle larger than 70.

3 Datasets

3.1 Sentinel-1

The Sentinel-1 radar operates at C-band at a central frequency of 5.405 GHz. It has four exclusive imaging modes with

different resolutions (down to 5 m) and swath width up to 400 km. Sentinel-1 has dual polarization capability and rapid165

product delivery. Sentinel-1 constellation includes Sentinel-1A and Sentinel-1B. These two satellites are in the same orbit

with a 180◦ orbital phasing difference. The revisit time for each of the satellites is 12 days. However, revisit time can get

to 6 days if both satellites make observations. The data are free and available through Alaska SAR Facility (ASF) or The

Copernicus Data Hub distribution service. We used the Interferometric Wide Swath (IW) mode data with 5 and 20m single

look resolution in range and azimuth direction, respectively. The IW swath width is about 250km. We used ASF On Demand170

Processing to generate interferometric phase and coherence at vv and vh (transmit-received polarization) polarization. Alaska

Satellite Facility’s Hybrid Pluggable Processing Pipeline (HyP3) is a service for processing Synthetic Aperture Radar (SAR)

imagery. The workflow includes interferometric phase correction for ground topography and geolocation. The ASF HYP3 uses

a Minimum Cost Flow (MCF) algorithm for phase unwrapping. The unwrapped phase and interferometric coherence were used

in this study. The resolution of the HYP3 phase and coherence is 80mx80m. Sentinel-1 collects data every 12 days globally but175

Figure 1. (a) C(θ,ρ) versus snow density for θ = 0 and θ = 80 shown by blue and red lines, respectively (b) The line slope in part (a) versus

incidence angle (c) ∆SWE error percentage assuming C =Aρ versus incidence angle for snow density equal to 0.15, 0.3, and 0.45 g/cm3,

shown by blue, red, and yellow lines, respectively.
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has the capability to collect the data every 6 days over targeted areas, mainly over Europe and selected areas such as SnowEx

sites. In order to validate our SWE retrieval using Sentinel-1 data, we use LIDAR data from SnowEx campaign and SNOTEL

data as discussed in section 5. We also use the average of SNOTEL data as a reference point for SWE retrieval, as seen in

section 4.

Figure 2. © Google Earth View (a) Google Earth View of Sentinel-1 path:71, frame:444 in Idaho. (b) zoomed to the Sentinel-1 path:71,

frame:444, shown by big green rectangle. Red boxes show the location of LIDAR data acquisition. The green diamonds show SNOTEL

stations with ∆SWE error less than 2cm in the entire time series. The red diamonds show SNOTEL stations with ∆SWE more less than

2cm in at least one observation in the time series. Yellow squares are SNOTEL stations 1 and 11 used for reference point. Blue diamonds

show the location of stations with temporal coherence less than 0.35 or temperature more than 0◦C in the entire time series.

The NASA SnowEx2021 Time Series is the continuation of the multi-year effort to improve SWE measurements and esti-180

mates. The data acquisition for different sensors and in situ collections spread over different US sites in winter 2020. These

sites span a range of snow climates and conditions, elevations, aspects, and vegetation. Flight paths were designed to include

sites with ongoing snow research projects, existing ground-based remote sensing infrastructure (e.g., radar and LIDAR), snow-

off and planned snow-on aerial LIDAR, and scheduled ground snow measurement. The 2021 Time Series data set covers fewer

regional sites and more frequent temporal sampling compared to the 2020 campaign. The SnowEx campaign coordinated with185

Sentinel-1 team to observe some of the SnowEx sites with 6 days revisit during the winter, which included the Idaho SnowEx

sites.

Figure 2(a) shows one of these sites that was observed every 6 days with the Sentinel-1 over Idaho. The green frame shows the

geographic location of path 71, frame 444 of Sentinel-1 data. Figure 2(b) is zoomed to the Sentinel-1 frame in part (a).
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3.2 SNOTEL190

SNOwpack TELemetry Network (SNOTEL) sites are located in remote, high elevated mountainous regions in the western US.

They automatically measure different snowpack characteristics and climate conditions. We used the United States Department

of Agriculture (USDA) website to access hourly SNOTEL data (https://wcc.sc.egov.usda.gov/nwcc/inventory) over the region

of interest shown in figure 2(b). As the Sentinel-1 frame in Idaho is collected at around 6 am local time, we downloaded

the SWE, snow depth, and near surface air temperature at 6 am for each of the SNOTEL stations. Small red, green, and195

blue diamonds in figure 2(b) show the SNOTEL locations in Sentinel-1 frame. Figure 3 (a) shows the time series SWE of

these SNOTEL sites starting from 12/1/2020 at 6am. Different colors show different SNOTEL stations. The elevation of these

stations varies between 3200m to 9520m. Therefore, the large spread of SWE between different stations in figure 3(a) is

expected. The dashed vertical lines are the start date of each 6-day repeat Sentinel-1 data. As seen in this figure, there is a

one 6-day repeat data acquisition gap in Sentinel-1 data on 2/5/21. Figure 3 (b) shows the mean ± std of SNOTEL ∆SWE200

between the start date Sentinel-1 data in figure 3(a) and 6 days later. We used the SWE data from these in situ stations for (a)

SWE retrievals validation by comparing retrieved ∆SWE with SNOTEL ∆SWE(as seen in section 5.1), and (b) the InSAR

reference point by subtracting the average of two SNOTEL ∆SWE from the retrieved ∆SWE (as explained in section 4).

Figure 3. (a) The daily SWE (cm) of in situ stations shown in figure 2(b) from 12/01/20 to 03/30/21. The dashed vertical lines show the

start date of Sentinel-1 observations. (b) The mean ± std of in situ ∆SWE for Sentinel-1 observation dates shown in part (a). Note that the

∆SWE is marked on the first day of each observation.
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3.3 QSI LIDAR

Airborne LIDAR provides high-resolution snow depth maps. These data are reliable sources of validation data, particularly205

a powerful constraint for InSAR retrieval of SWE. We used the LIDAR data for validating the retrieved SWE results. The

"SnowEx20-21 QSI LIDAR DEM 0.5m" data set is part of the SnowEx 2020 and SnowEx 2021 campaigns (Adebisi et al.,

2022). The data includes digital elevation models, snow depth, and vegetation height with 0.5m spatial resolution. Data were

acquired over multiple areas in Colorado, Idaho, and Utah during February 2020, March 2021, and September 2021. The two

red boxes in figure 2(b) show the location of LIDAR data acquisition. The big red box is over Banner Summit and the small red210

box is over Mores Creek in Idaho. Figures 10(a) and 11(a) show the QSI snow depth over Barren Summit and Mores Creek,

respectively. We used this data in section 5.2 to compare with retrieved SWE using Sentinel-1 data.

4 SWE Retrieval Using Sentinel-1 interferometric Phase

Figure 4. Retrieved ∆SWE using Sentinel-1 path:71, frame:444 interferometric phase data between (a) 12/01/20 and 12/07/20 (b) 12/13/20

and 12/19/20 (c) 01/24/21 and 01/30/21. Sentinel-1 path:71, frame:444 coherence between (d) 12/01/20 and 12/07/20 (Observation 1) (e)

12/13/20 and 12/19/20 (Observation 3) (f) 01/24/21 and 01/30/21 (Observation 10).The small diamonds are in situ locations. The average of

in situ ∆SWE, for images (a), (b), and (c) are 0.01cm, 2.72 cm, and 4.33 cm, respectively.
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As mentioned in section 3.1, Sentinel-1 data were collected every 6 days over the region shown in figure 2(b) during 2020

and 2021, following coordination between the SnowEx campaign and the Sentinel-1 team. We used 6-day repeat Sentinel-215

1 time series data between 12/1/20 to 3/30/21. We selected this period to (a) capture most of the seasonal snow storm and

(b) avoid wet snow as much as possible. The main sources of error in the science and applications using Sentinel-1 repeat-

pass interferometry are (1) tropospheric noise, (2) temporal decorrelation, and (3) phase ambiguity. We removed tropospheric

noise from the unwrapped phase as explained in section 4.1. The unwrapped phase is converted to ∆SWE using equation

4. Temporal decorrelation is relatively high at C-band. The 6-day repeat time improves the temporal coherence significantly220

over snow compared to the normal 12-day Sentinel-1 repeat time. In this study, any pixel with temporal coherence more than

0.35 is considered reliable. Temporal coherence of 0.35 is arbitrary, but based on experience working with InSAR data, it is

a reasonable threshold number. However, for the results in section 5.2, we used all the time series data, including the data

with low coherence, to calculate total SWE. The reason is that in order to compare the total SWE on a date close to LIDAR

acquisition date, we need the whole ∆SWE time series up to that date.225

Phase ambiguity is still one of the big sources of error in some of our data as discussed in section 5.1.2. The radar signal

propagating through ionosphere is delayed. The delay is a function of frequency of the signal, Earth’s magnetic field, and total

electron content (TEC) and affects the accuracy of ∆SWE retrieval. The ionospheric error at C-band is much smaller than

other sources of error and we consider it negligible in this study.

The temperature is also an important factor. Equation 1 is valid for dry snow (Leinss et al., 2015), and we use near surface230

air temperature above 0◦C as a metric that indicates wet snow in snow season. Any SNOTEL data with in situ near surface air

temperature more than 0◦C is unreliable in our study. Similar to coherence filtering, for the results in section 5.2, we used all

the time series data, including the data with temperature more than 0◦C . Similar to temporal coherence, the reason is that in

order to compare the total SWE with LIDAR snow depth at LIDAR acquisition date, we need the entire ∆SWE time series

up to that date.235

Another important factor in interferometric phase images is the reference point to calibrate the unwrapped phase or conse-

quently ∆SWE. In geophysics applications using InSAR, the reference point is a stable target with no displacement or known

displacement in the time interval between acquisition of the two images. For ∆SWE estimation using InSAR, the reference

point is chosen either by corner reflectors (cleaned of snow) with stable zero phase (Nagler et al., 2022; Dagurova et al., 2020)

or using the average of in situ ∆SWE (Conde et al., 2019) or using a snow free region (Tarricone et al., 2023). As seen in240

figure 2(b), there are large number of in situ stations in this frame. In this study, we used the average of two in situ ∆SWE to

calibrate the retrieved∆SWE images. The two selected in situ stations have reliable measurements (coherence more than 0.35

and temperature less than 0◦C ) for the entire time series. For the rest of this study we used in situ stations 1 and 11 ∆SWE

values to calibrate the retrieved ∆SWE. Stations 1 and 11 are shown by yellow squares in figure 2(b).

Figures 4(a), (b), and (c) show retrieved ∆SWE between 12/1/20 and 12/7/20, 12/13/20 and 12/19/20, and 1/24/21 and245

1/30/21, respectively. The small diamonds show the location of in situ stations in this Sentinel-1 frame. The average of in situ

∆SWE, for images 4(a), (b), and (c) are 0.01cm, 2.72 cm, and 4.33 cm, respectively. The retrieved ∆SWE images in top row

of figure 4 show no SWE change in part (a) and snow storms in part (b) and (c) which match the in situ measurements.
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Bottom row of figure 4 shows the coherence of the images in top row of figure 4. Interferometric decorrelation has different

sources, such as temporal decorrelation, volume decorrelation, signal to noise ratio decorrelation, geomteric decorrelation, ....250

The volume decorrelation is small due to relatively small Sentinel-1 perpendicular baseline. Temporal decorrelation is the dom-

inant source of decorrelation. For the rest of this study, we assume the observed interferometric decorrelation is approximately

the temporal coherence. As shown in figures 4(e) and (f), snow storms reduce the coherence significantly whereas no SWE

change shows very small decorrelation, as expected.

4.1 Tropospheric Noise Removal255

A radio wave’s differential phase delay variation through the troposphere is one of the largest error sources in Interferometric

Synthetic Aperture Radar (InSAR) measurements, and water vapor variability in the troposphere is known to be the dominant

factor. The differential delay present in a given interferogram may reach tens of centimeters. Various ways of mitigating

tropospheric effects are routinely employed. Here, we used a global atmospheric weather model to predict the radar phase delay

due to variations in atmospheric pressure and water vapor content between passes. Specifically, we used the European Center260

for Medium-Range Weather Forecasts (ECMWF) ERA5 model of atmospheric variables, which provides hourly estimates on

a 30 km global grid based on assimilation of surface and satellite meteorological data. We used the Python-based Atmospheric

Phase Screen (PyAPS) software (Jolivet et al., 2011) to interpolate this grid, and convert those variables into a radar phase

delay. PyAPS is integrated into, and leveraged by, the Miami InSAR Time-series software in Python (MintPy) (Yunjun et al.,

2019). We used MintPy to crop the atmospheric delays to match the spatial extent of the interferograms, and projected the265

delays into radar line-of-sight (LOS). It should be noted that while the ERA weather models often provide a reliable method

for representing atmospheric phenomena at > 30−km wavelengths (grid spacing), they are less accurate at finer spatial scale,

where atmospheric conditions can vary as a function of topography. Model interpolation between grid nodes as a function of

elevation were performed, however some over-smoothing of atmospheric variations might still occur. More work is necessary

to better determine the overall effectiveness of atmospheric phase removal, including whether tropospheric delay is completely270

mitigated or over-corrected, and on what spatial scales.

Figure 5 shows an example of how significant tropospheric noise can be in an InSAR image. Figure 5(a) shows the line of

sight (LOS) displacement with no atmospheric correction over our area of interest in figure 2(b) between 03/13/21 and 03/19/21.

Figure 5(b) shows the atmospheric noise estimation using PyAPS. Figure 5(c) shows LOS displacement after tropospheric noise

removal by subtracting 5(b) from 5(a). Comparing figures 5(a) and (c), we can see that the atmospheric noise can affect the275

estimated ∆SWE by 5-10cm (LOS displacement error converted to ∆SWE) in upper left of the images.

5 Results And Discussions

In this section we compare retrieved SWE using Sentinel-1 interferometric phase with in situ stations and LIDAR data.

5.1 Comparing Retrieved SWE using Sentinel-1 and SNOTEL SWE
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5.1.1 Comparing Retrieved ∆SWE using Sentinel-1 and SNOTEL ∆SWE280

We used all the retrieved ∆SWE (using the Sentinel-1 data from 12/1/20 to 3/30/21) for in situ stations shown in figure

2(b) and compared them with corresponding SNOTEL ∆SWE. As mentioned in section 4, any retrieved value with temporal

coherence less than 0.35 and temperature higher than 0◦C is discarded. Note that the data shown in figure 6 is the SWE change

between two consecutive Sentinel-1 data that are 6 days apart. We showed the ∆SWE for all stations and all consecutive

observations between 12/1/20 and 3/30/21. As mentioned in section 3.1, the resolution of the Sentinel-1 InSAR data from285

Hyp3 is 80mx80m. We used a 10x10 multi-looks window of retrieved SWE and temporal coherence around the SNOTEL

Figure 5. Sentinel-1 path:71, frame:444 (a) Line of Sight (LOS) displacement (m) With atmospheric noise (b) Atmospheric noise (m) (c)

Line of Sight displacement (m) Without atmospheric noise, between 03/13/21 and 03/19/21.

Figure 6. (a) Retrieved ∆SWE using Sentinel-1 interferometric phase versus in situ ∆SWE for all the stations with temporal coherence

more than 0.35 for the entire Sentinel-1 time series from December 2020 to March 2021. (b) Correlation (left axis) and absolute error (right

axis) between retrieved ∆SWE using Sentinel-1 interferometric phase and in situ ∆SWE for each in situ station. (c) Correlation (left axis)

and absolute error (right axis) between retrieved ∆SWE using Sentinel-1 interferometric phase and in situ ∆SWE for each interferogram.

Note that the labels on x-axis show the first date of each interferometric observation.
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locations to reduce the speckle noise. Therefore, we compared the SNOTEL SWE with the 800mx800m retrieved SWE around

the SNOTEL site. The heterogeneity of the environment such as vegetation cover, vegetation fraction, land type, and SWE

distribution in the 800mx800m around the SNOTEL station affects our accuracy. We will analyze the effect of the heterogeneity

of the environment on the SWE retrieval for SNOTEL stations in the future work of this study.290

Figure 6 (a) compares all the retrieved ∆SWE time series using Sentinel-1 data over all in situ stations with SNOTEL

∆SWE. As seen in this figure, the retrieved and in situ ∆SWE are highly correlated (0.8), with an RMSE of 0.93cm .

Figure 6(b) shows the correlation and RMSE between the entire time series of retrieved and in situ ∆SWE for each station,

by blue and red circles respectively. As seen in this figure, the correlation is good (more than 0.6 for all stations except three).

The RMSE is less than 2cm for all stations and less than 1cm for most stations. Note that station 4 has just one observation295

with temporal coherence more than 0.35. That observation is the first observation with zero SWE change. Therefore, there is

not enough points to calculate ρi. Hence, RMSE and correlation are zero.

Figure 7. Sentinel-1 Wrapped Phase path:71, frame:444 between (a) 12/19/20 and 12/25/20 (Observation 4) (b) 12/25/20 and 12/31/20

(Observation 5).

Figure 6(c) shows the correlation and RMSE between the in situ stations and retrieved ∆SWE for each Sentinel-1 acqui-

sition first date, by blue and red circles respectively. Note that the labels on x-axis show the first date of each interferometric

observation. The RMSE is again less than 2cm for all dates and less than 1cm for many dates. As seen in this figure, the corre-300

lation is more than 0.4 for some dates and poor (less than 0.4) for some others. Among the observation dates with correlation

less than 0.35 (observation 1, 2, 4, 7, 9, 15, 16, and 17), observations 1, 2, 7, 9, 15, and 16 have very small snow accumulation

(the average ∆SWE is less than 0.5cm). Therefore, the phase is not sensitive enough to SWE change, hence low correlation.
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For observation 4 and 17, we observed that the low coherence degrades the phase unwrapping performance for these InSAR

images. Figure 7(a) and (b) show the wrapped phase for observations 4 and 5, respectively. Note that the correlation between in305

situ and retrieved ∆SWE in figure 6(c) is 0.1 for observation 4 and 0.7 for observation 5. The average in situ ∆SWE between

12/19/20 and 12/25/20 (observation 4) is 1.6cm and between 12/25/20 and 12/31/20 (observation 5) is 2.3cm. However, the

interferometric fringes in figure 7(a) are very noisy compared to figure 7(b). We observe that 4 out of 6 days between 12/19/20

and 12/25/20 (observation 4) are relatively warm including day 12/19/20. All 31 stations have temperature between −7◦C to

6◦C at 6 am in those four days. The warm days cause a lot of melting and refreezing in those 4 days. Hence, we expect to310

have small temporal coherence and consequently noisier fringes. On the other hand, the temperature is relatively warm only

on 12/26/20. The rest of the 5 days between 12/25/20 and 12/31/20 (observation 5) are mostly colder than −7◦C for all 31

stations. Therefore, higher temporal coherence and less noisier fringes. We believe the noisy fringes degrade the performance

of the unwrapping algorithm significantly. Therefore, the retrieved ∆SWE is more accurate for observation 5 compared to

observation 4. One of the main future works of this study is to improve the phase unwrapping over images with low coherence.315

5.1.2 Comparing Retrieved Total SWE using Sentinel-1 and SNOTEL Total SWE

Figure 8. Time series of total in situ and retrieved SWE using Sentinel-1 interferometric phase shown by blue and red lines, respectively for

stations 12 (shown in 9a), 30 (9b) and 20 (9c).

In this section, we used time series retrieved ∆SWE to calculate total SWE at each date compared to start date of our time

series (12/01/2020) by

SWE(ti+1) =

ti
∑

tj=t1

∆SWE(tj , tj+1) (5)

where t1 is 12/01/2020. For instance, SWE at 12/25/20 compared to 12/01/2020 is the summation of all four retrieved320

∆SWE (∆SWE12/01/20−12/07/20+∆SWE12/07/20−12/13/20+∆SWE12/13/20−12/19/20+∆SWE12/19/20−12/25/20). Note

that the SWE(ti+1) is measured compared to SWE(t1). For simplicity, we assume the SWE at time t1 is equal to zero.
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Figures 8 (a), (b), and (c) show the time series of total SWE for in situ stations 12, 30, and 20, respectively. Note that we

used average of stations 1 and 11 ∆SWE for reference point in this study. The red and blue lines show the retrieved and in

situ total SWE at each Sentinel-1 date acquisition compared to 12/01/2020. However, as mentioned in section 4 and 5.1.1, we325

only used ∆SWE values with temporal coherence more than 0.35 and temperature less than 0◦C. We had 18 observations

for the entire time series. Discarding some observation due to low temporal coherence or high temperature, changes the time

series length. As seen in figure 8, we keep all 18 observations for station 20 but only 15 observations for station 12.

As seen in this figure, the time series of total retrieved SWE aligns closely with in situ values for stations 12 and 30. The error

is less than 2cm in the entire time series. However, the retrieved SWE for station 20 diverges from in situ values even though it330

follows the same pattern. The error in total SWE estimation is about 10cm at the end of the time series. We think the main reason

for divergence is the phase unwrapping error and phase ambiguity. As discussed in section 5.1.1, the noisy fringes degrade the

performance of the unwrapping algorithm. A similar problem is observed in tower-based studies. The retrieval diverges from

the in situ values by phase ambiguity values over large snow storms at C-band (figure 13(c) in (Ruiz et al., 2022)). However,

even in these cases, the trends of SWE remain the same between retrieved and in situ values. We will investigate the reason335

behind the divergence of retrieved SWE from in situ SWE of these stations in the future work of this study.

Figure 9. (a) ∆SWE ambiguity versus incidence angle using Leinss’s approximation (blue line) and Oveisgharan’s approximation (red

line) (b) coherence for data acquired between 02/11/21 and /02/17/21 (Observation 11). Green diamonds show the location of stations with

less than 2 cm total SWE error. Red diamonds show the location of stations with more than 2 cm total SWE error.

Figure 9 (a) shows the Sentinel-1 ∆SWE ambiguity versus incidence angle. The red line shows the ∆SWE ambiguity

using equation 4 (∆φ= 2π). The blue line shows the ∆SWE ambiguity using Leinss et al. approximation (∆φ= κi(1.59+

θ2.5)∆SWE) (Leinss et al., 2015). As seen in this figure, ∆SWE ambiguity is between 1.5 to 3.5 cm depending on the
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incidence angle. The relatively small ∆SWE ambiguity of Sentinel-1 makes the unwrapping challenging for snow storms.340

Figure 9(b) shows the temporal coherence between 02/11/21 and 02/17/21. We can see very low coherence in the snow storm

regions which degrades the unwrapping process. As mentioned before, one of the main future projects of this study is to work

on improving the unwrapping phase.

For each station plot in figure 8, we also report the average RMSE error (<∆SWEErrstation# >) and correlation (ρstation#)

between retrieved and in situ ∆SWE, as also plotted in figure 6(b). We also report the average of temporal coherence for all345

the interferograms over that station (< ρtemp >) to show how reliable the measurements at that station are. For all three sta-

tions, the RMSE error for ∆SWE is less than 1.1 cm, the correlation between in situ and retrieved ∆SWE is greater than

0.8, and temporal coherence is greater than 0.5. The SNOTEL sites are shown by small diamonds in figure 2(b). The green

small diamonds have a total SWE error less than 2 cm in the entire time series, similar to stations 12 and 30. The red diamonds

have a total SWE error more than 2cm, similar to station 20. However, the retrieved SWE has a similar pattern as in situ SWE.350

Therefore, we think they have a phase unwrapping problem similar to station 20. These stations are also shown in figure 7(a).

As seen in this figure, the red diamonds are mostly located in regions with noisy fringes which makes the unwrapping chal-

lenging. Among all 31 stations in the Sentinel-1 frame, 6 of them have temporal coherence less than 0.35 or temperature more

than 0◦C in their entire time series. These stations are shown by blue diamonds in figure 2(b). Two of these stations are used

for calibration of the phase. Hence these two stations cannot be used for comparisons. So, there were 23 stations with more355

than 2 reliable observation dates in their time series. Among the 23 stations, 9 have SWE error less than 2cm (green diamonds)

and 14 of them have SWE error larger than 2cm (red diamonds).

5.2 Comparing Retrieved SWE using Sentinel-1 and LIDAR SWE

As mentioned in section 3.3, the QSI LIDAR data were collected during the SnowEx campaign. There are two LIDAR data sets

collected over the Sentinel-1 path:71, frame:444 in winter 2021. The locations are shown with red rectangles in figure 2(b).

Figure 10. (a) QSI LIDAR snow depth over Banner Summit, ID on 3/15/21 (b). Retrieved total SWE using Sentinel-1 interferometric data

from 12/1/20 to 3/19/21 over Banner Summit, ID. (c) 2D histogram of data in (b) versus data in (a).

360
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Figures 10(a) and 11(a) show the LIDAR snow depth on 3/15/21 over Banner Summit and Mores Creek, respectively. The

terrain DEM is measured by LIDAR sensor during September 2021. The DEM is used to measure the snow depth using

the LIDAR data collected on 3/15/2021. The big red rectangle in figure 2(b) corresponds to Banner Summit and small red

rectangle corresponds to Mores Creek. We calculated the total SWE compared to 12/01/2020 on the closest day to LIDAR date

acquisition. We used all the retrieved ∆SWE from 12/01/2020 to 03/19/2021, and calculated the total SWE on 03/19/21 using365

equation 5. Figures 10(b) and 11(b) show the retrieved SWE on 03/19/21 over Banner Summit and Mores Creek, respectively.

The part (a) and (b) in figures 10 and 11 have very similar patterns. The 2D-histograms of these two images are shown in figure

10(c) and 11(c) where x- and y-axis show the LIDAR snow depth and Sentinel-1 retrieved SWE, respectively. The colors

in part (c) shows the 10number of cells with LIDAR snow depth x in part(a) and InSAR SWE y in part (b). The correlation

between these two data sets is 0.47 for Banner Summit and 0.59 for Mores Creek. Note that the LIDAR data show the snow370

depth whereas Sentinel-1 retrieved data show the total SWE accumulated during the Sentinel-1 overpasses analyzed. On the

other hand, LIDAR has a much higher resolution. The relatively good correlation (0.47 and 0.59) between the two independent

measurements with different resolutions is a very good indication of the success of this method in estimating SWE.

Figure 11. (a) QSI LIDAR snow depth over Mores Creek, ID on 3/15/21. (b) Retrieved total SWE using Sentinel-1 interferometric data from

12/1/20 to 3/19/21 over Mores Creek, ID. (c) 2D histogram of data in (b) versus data in (a).

Figures 12 (a) and (c) show the mean of Sentinel-1 temporal coherence between 12/01/20 to 03/19/21 over Banner Summit

and Mores Creek, respectively. As seen in these figures, the temporal coherence varies between 0.2 to 0.9. As mentioned375

earlier in this section, the correlation between LIDAR snow depth data on 03/15/21 and retrieved total SWE using Sentinel-1

data on 3/19/21 is 0.47 for Banner Summit and 0.59 for Mores Creek. However, some of the points may have low temporal

coherence and not viable for retrieval as discussed in section 4. Left axis in figures 12 (b) and (d) show the correlation between

LIDAR snow depth data on 03/15/21 and retrieved total SWE using Sentinel-1 data on 3/19/21, for points with mean temporal

coherence above ρtemp,threshold. Figure (b) shows the correlation versus ρtemp,threshold over Banner Summit and figure (d)380

shows the correlation over Mores Creek. Note that the correlation is 0.47 for Barren Summit and 0.59 for Mores Creek with

no filter (ρtemp,threshold = 0.1) as reported in figure 10(c) and 11(c), respectively. Right axis in figure 12(b) and (d) show the
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Figure 12. (a) Mean of Sentinel-1 temporal coherence between 12/01/20 to 03/19/21 over Banner Summit, ID. (b) (left axis) Correlation

between LIDAR snow depth and Retrieved total SWE on 03/19/21 using Sentinel-1 over Banner Summit for all points with mean temporal

coherence greater than ρtemp,threshold versus ρtemp,threshold. (right axis) Number of points in Banner Summit with mean temporal coher-

ence greater than ρtemp,threshold versus ρtemp,threshold. (c) Mean of Sentinel-1 temporal coherence between 12/01/20 to 03/19/21 over

Mores Creek, ID. (d) (left axis) Correlation between LIDAR snow depth and Retrieved total SWE using Sentinel-1 over Mores Creek, for

all points with mean temporal coherence greater than ρtemp,threshold versus ρtemp,threshold. (right axis) Number of points in Mores Creek

with mean temporal coherence greater than ρtemp,threshold versus ρtemp,threshold.
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number of points in the image in part (a) and (c) with mean temporal coherence more than ρtemp,threshold. There are 5 times

more points in figure 12(a) compared to figure 12(c). Therefore, we can better do statistical evaluation for part (b) compared

to part (d). As seen in figure 12(b), the correlation between LIDAR snow depth and retrieved total SWE increases by filtering385

out points with low temporal coherence, as expected. We need to investigate more to explain the reason correlation decreases

between 0.74 < ρtemp,threshold < 0.8.

The correlation between LIDAR snow depth and retrieved total SWE in figure 12(d) is relatively constant with increasing

ρtemp,threshold. However, as we increase the ρtemp,threshold to more than 0.46, the correlation gradually decreases to 0.4 at

ρtemp,threshold = 0.65 and remains relatively constant up to ρtemp,threshold = 0.72. The number of points for ρtemp,threshold >390

0.72 is less than 20. Therefore, the correlation is not statistically very meaningful compared to the correlation for ρtemp,threshold <

0.72. Mores Creek has a lower elevation (6100m at station 21) compared to Banner Summit (7040m at station 2). Mores Creek

is also warmer (mean temperature of -4.3 for the entire time series at station 21) than Banner Summit (mean temperature of

-8.8 for the entire time series at station 3). We expect to have higher correlation with filtering low temporal coherence points

as seen in figure 12(b). We think the reason we don’t see such a behavior in figure 12(d) is that the warmer temperature ,395

melting and refreezing degrade the retrieval performance even for highly correlated regions. More investigation is needed to

better explain the reason correlation varies a little or decrease with increasing ρtemp,threshold in figure 12(d).

Figure 13. (a) (left axis) Correlation between LIDAR snow depth and Retrieved total SWE using Sentinel-1 on specific observation date over

Banner Summit versus observation number. (right axis) ∆SWE (cm) for any specific observation date at station 2 in Banner Summit. (b)

(left axis) Correlation between LIDAR snow depth and Retrieved total SWE using Sentinel-1 on specific observation date over Mores Creek

versus observation number. (right axis) ∆SWE (cm) for any specific observation date at station 27 in Mores Creek.

Left axis in figure 13(a) and (b) show the correlation between LDIAR snow depth on 03/15/21 and retrieved total SWE for

each observation between 12/01/20 and 03/19/21 over Barren Summit and Mores Creek, respectively. Observation 16 shows
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the correlation reported in figure 10(c) and 11(c). Right axis in figure 13(a) and (b) show ∆SWE (cm) for each observation400

between 12/01/20 and 03/19/21 at station 2 in Barren Summit and station 21 in Mores Creek, respectively. As seen in both

figures, the correlation gradually increases after observation 7 or 8. The correlation is high for observation 4 at the beginning of

the snow season for both Barren Summit and Mores Creek. Observation 4 is after the first snow storm of the season. It shows

that the spatial variability of snow at the end of the snow season is captured by the first or second snow storm.

6 Conclusions405

In this study, we used Sentinel-1 time series to retrieve ∆SWE and consequently total SWE. We chose a frame in Idaho that

covers several SnowEx 2020-21 sites and 31 of SNOTEL in situ stations. LIDAR data are available for validating our results.

Sentinel-1 data was collected every 6 days over this SnowEx site instead of the regular 12 days which helps a lot with temporal

coherence over snowstorms. This provides a unique dense time series of spaceborne data for studying the performance of SWE

retrieval using InSAR.410

We showed that retrieved ∆SWE using Sentinel-1 is highly correlated (0.8) with in situ values, with an RMSE of 0.93cm.

For reference point of interferometric phase, we used two in situ stations with temporal coherence more than 0.35 and tem-

perature less than 0◦C for the entire time series. We subtracted the difference between the average of in situ and retrieved

∆SWE of these two stations from retrieved values to calibrate the retrieved ∆SWE. The ∆SWE RMSE error is less than

2 cm for all stations and less than 1 cm for most stations. The correlation between retrieved and in situ ∆SWE is more than415

0.6 for most stations. The ∆SWE retrieval performance degrades for days with small ∆SWE. We demonstrated that low

temporal coherence not only degrades the SWE retrieval performance, but also the unwrapping algorithm performance. We

showed that big melting events between two Sentinel-1 acquisitions make the interferometric fringes noisy and unwrapping

algorithm challenging.

The retrieved total SWE has less than 2cm RMSE compared with in situ values for 9 stations and more than 2 cm for 14420

stations.

The highlight of the results of this study is the similarity between two independent measurements, retrieved SWE using

Sentinel-1 data and LIDAR snow depth data. We used Sentinel-1 data between 12/01/20 to 03/19/21 to retrieve ∆SWE

time series. By adding the entire time series of ∆SWE, we calculated the total SWE on 03/19/21. Total retrieved SWE

using Sentinel-1 interferometric data and LIDAR snow depth images over two regions in Idaho show similar patterns and are425

correlated by more than 0.47. We showed that the correlation is higher for regions with higher temporal coherence in Banner

Summit.

Considering all these validations, we show for the first time that SWE retrieval using time series of InSAR spaceborne data

is a very promising candidate for the future SWE mission.

We also showed that the main constraints for this method are its temporal coherence, phase unwrapping, and phase ambiguity.430

We showed that snow storms reduce the temporal coherence significantly. Low temporal coherence reduces the accuracy of the

interferometric phase and unwrapping algorithm. It is also shown in this study that melting due to warm temperature reduces
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the temporal coherence and the performance of unwrapping algorithm. Small SWE ambiguity at C-band makes the phase

unwrapping more challenging. Going from C-band to lower frequencies such as L-band improves both the temporal coherence

and SWE ambiguity. With the L-band NISAR launch coming next winter, the new dataset would be a great dataset for global435

SWE retrieval.
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