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Abstract
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In late March 2011, landfast sea ice (hereafter, ‘fast ice’) formed in the northern Larsen B embayment and persisted (Deleted: ) with long
continuously as multi-year fast ice until January 2022. In the 11 years of fast ice presence, the northern Larsen B glaciers (Deleted: swells (>

slowed significantly, thickened in their lower reaches, and developed extensive mélange areas Jeading to the formation of ice (Deleted: that reached
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tongues that extended up to 16 km from the 2011 ice fronts. In situ measurements of ice speed on adjacent ice shelf areas
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spanning 2011 to 2017 show that the fast ice provided significant resistive stress to ice flow. Fast ice breakout began in late
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January 2022, and was closely followed by retreat and break-up of both the fast ice mélange and the glacier ice fongues. We
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investigate the probable triggers for the loss of fast ice and document the initial upstream glacier responses. J[he fast ice break-
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Weddell Sea, creating a near-ice-free corridor to the open ocean. Remote sensing data in the months following the fast ice

break-out reveals an initial ice flow speed increase {< 333%), elevation loss (9 to 11 m), and rapid calving of floating and

grounded ice for the three main embayment glaciers Crane (11 km), Hektoria (25 km), and Green (18 km).

1 Introduction

As the climate warms, ice shelves in Antarctica are predicted to become more susceptible to collapse (Mercer, 1978; Gilbert
and Kittel, 2021). In the late 1980s and mid 1990s several ice shelves along the Antarctic Peninsula (AP) coast retreated and
eventually disintegrated, including the Wordie, Prince Gustav, Larsen Inlet, Larsen A ice shelves, and in March 2002, the
northern two-thirds of the Larsen B Ice Shelf (Rott et al., 1996; Glasser and Scambos, 2008; Cook and Vaughan, 2010). In
2008 _and 2009, several smaller break-up events occurred on the Wilkins Ice Shelf (Braun et al., 2009; Scambos et al., 2009).

There has been significant research elucidating the causes of these collapses, focusing on both ice-shelf thinning due to basal

and surface melting (Smith et al., 2020), as well as lake drainage mechanisms related to surface meltwater-induced ice-shelf

flexure and hydrofracture (Doake and Vaughan 1991; Scambos et al., 2000; Scambos et al., 2003; Banwell et al., 2013; Banwell

and MacAyeal, 2015) partly attributed to warmer climate conditions (Rott et al., 1998), plate-bending stresses on the jce-shelf

front (Scambos et al., 2009), and ocean swell flexure (Massom et al., 2018). Massom et al. (2018) further implicate loss of fast

ice and ocean swell in the Wilkins Ice Shelf breakup events, following loss of a protective pack ice buffer offshore — due to
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the vulnerability of fast ice to ocean swells (Crocker and Wadhams, 1989; Langhorne et al., 2001). While fast ice is

consolidated sea ice that remains stationary attached to the coast and can be annual or perennial (Fraser et al., 2021), pack ice

refers to sea ice that is comprised of separate floes and is under the influence of winds and ocean currents. The loose structure
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of pack ice has a strong damping effect on ocean swell (Squire, 2007).

Intense surface melt events on the eastern Antarctic Peninsula have been linked to atmospheric rivers (ARs; Wille et al., 2019;
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Wille et al., 2022) and foehn winds (Cape et al., 2015; Datta et al., 2019; Laffin et al., 2022). ARs are long narrow bands of ; '
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warm and moist air that can cause extreme warm temperatures, increase surface melting, advect sea ice away from the ice

edge, reduce sea ice concentrations, and generate foehn events (Bozkurt et al., 2018; Wille et al., 2022; Liang et al., 2023).
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Foehn events occur when a moist air mass ascends on the windward side of a mountain range or ridge and cools at the (lower)
wet-adiabatic rate, while losing moisture to precipitation. It then descends over the lee side, adiabatically warming at the higher

dry-air rate, resulting in an increase in temperature. The loss of ice shelves can substantially

outlet glaciers, leading to acceleration, increased calving, thinning, and ultimately, sea level rise. For example, when the Larsen ./

(Deleted: -
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sped up by roughly 3-fold (Rignot et al., 2004) and the Hektoria-Green-Evans (hereafter, HGE) Glacier system ice flow speed

increased by up to 8-fold (Rignot et al., 2004). After the collapse of the Larsen B in 2002, the embaymentwas frequently filled .~
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Larsen B embayment, and the interior two-thirds of the embayment was continuously covered by multi-year fast ice until

January 2022. On 19 January 2022, this fast ice cover was suddenly fractured and began to drift out, leading, within days,to

retreat and break-up of the tributary glacier mélange and floating ice tongue areas,(Fig. 1). Fast ice has been shown to stabilize :

outlet glaciers by reducing calving (Amundson et al, 2010; Robel 2017) and,suppressing wave action against the outlet glacier

(Murty, 1985; Langhorne et al., 2001) causing the glacier terminus to advance (Reeh et al., 2001). When fast ice or mélange W

breaks up, ice-shelf calving resumes, sometimes releasing several decades of accumulated ice flux, and exposing the new

terminus to ocean dynamics (Rech et al., 2001; Cassotto et al., 2015).

Several studies have suggested that break-up of fast ice can reduce the structural integrity of ice shelves and ultimately lead to

their collapse (Khazendar et al., 2007; Massom et al., 2010; Borstad et al., 2013; Banwell et al., 2017; Massom et al., 2018).

There have been many examples of tributary glacier acceleration and significant ice front retreats following the removal of »

fast ice or pack ice in Greenland and Antarctica (Miles et al., 2017, Miles et al., 2018, Gomez-Fell et al., 2022). Others (Sun

etal,, 2023; Surawy-Stepney et al., 2023) suggest that fast ice does not provide sufficient buttressing (resistive stress to jmpact
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Here we investigate the climatic and oceanic drivers that led to the yapid break-out of the decade-old Larsen B fast ice in

January 2022, while also drawing parallels to previous fast ice and ice shelf collapses. We then assess the initial glacier

dynamic response to the loss of the buttressing fast ice by evaluating changes in velocity, terminus position, and glevation of

the Crane, Jorum, Punchbowl, and HGE glaciers. A preliminary assessment of the cause of the fast ice break-up was discussed

as a sidebar in the NOAA State of the Climate 2022 report (Ochwat et al., 2023b). However, the current study evaluates the
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events in much greater detail and includes a quantitative look at the glacier response.

2 Study area
The Larsen B embayment (65.24° S, and 61.00° W; Fig. 1) is located on the eastern side of the AP, between Graham Land and

the northwestern Weddell Sea and is ~7000 km? in area, North of the embayment is the Seal Nunataks Ice Shelf (Shuman et
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Due to the elevated narrow ridge of the northern AP (Graham Land) and the prevailing westerly wind, the climate of the Larsen

B embayment region differs greatly between the western and eastern flanks. The ridge obstructs the Southern Hemisphere

westerlies and induces strong orographic lifting and precipitation on the western side, while the eastern side is much drier and ]

cooler (King et al., 2003; Van Wessem et al., 2015). The climate is heavily influenced by the phase of the Southern Annual
Mode (SAM; Leeson et al., 2017; Fogt and Marshall, 2020). When the SAM index is positive, warming events occur more
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89 Figure 1: a) Freeboard thickness from ICESat-2 data from ] January 2021 to J January 2022. The yellow dashes show the .
90 JanDEM-X determined 2016 grounding zone (Rott et al., 2018) and blackglashes are a slope change and calving-morphology
91 inferred 2021 grounding zone (this study). An AMIGOS GPS installation on Scar Inlet Ice Shelf is indicated by the white star,__
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95 3 Data and Methods | (Deleted: ,
96  The following datasets are used in various capacities to evaluate the triggers of the fast ice break-out as well as the initial »"(Deleted: -
. . . . . L . . " ( Deleted: ,
97 glacier response. Reanalysis data is used to evaluate both potential atmospheric and oceanic triggers. Passive microwave data E
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98 is used to determine sea ice extent and surface melt conditions. Optical satellite imagery from a number of satellite systems

99 and synthetic aperture radar data, are used for assessing glacier ice, fast ice, elevation changes, and determining glacier speeds.

.00 Laser altimetry data is also used for assessing initial glacier and fast ice elevation. Lastly, GNSS data is used to look at Scar
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3.1 Reanalysis Data

We used ERA-5 Reanalysis data, (Hersbach et al., 2020) at both monthly and hourly temporal resolution to assess femperature ; !

and precipitation anomalies in 2017 to 2022, as well as foehn wind occurrence in the months prior to and including January :

2022. To investigate the presence of foehn winds, we followed Laffin et al. (2022), who determined that fochn winds that ‘

produce surface melt require a temperature > 0°C, a wind speed of > 2.85 m s™!, humidity < 79%, and a wind direction from

the porth or northwest. These thresholds agree with Cape et al. (2015)’s determination of the onset of “foehn days” (foehn
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‘(Deleted: significant trends that occurred in 2017 to 2022 and
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conditions for greater than 6 hours).

To identify ARs during the last two weeks of January 2022, we use hourly ERA-5 to examine yertically integrated water vapor
transport (IVT) bands that extend from the extra-tropics towards the Antarctic ice sheet (Bozkurt et al., 2018; Wille et al.,

2019). IVT is calculated as the vector magnitude of eastward integrated water vapor transport (ulVT) and northward integrated
water vapor transport (VIVT). We identify an AR event during the breakout as a continuous, extended region of locally high

IVT, that reaches a peak intensity of almost 300 kg m™' s consistent with Wille et al. (2022).

5 (Deleted: in January 2022

E (Deleted: long filaments of
"(Deleted:
r (Deleted: , consistent with Wille et al. (2022),
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Following Massom et al. (2018) and Teder et al. (2022), we investigate the occurrence of open-ocean corridors across the sea

,,,,V[Deleted: To assess ocean characteristics, we used ERA-5 wave

data....

ice zone, using ERA-5 and WaveWatch 1T wave data. We used significant wave height as a proxy for wave energy (Teder et

al., 2022), calculated to be four times the square root of the zeroth moment of the energy density spectrum (Massom et al.,

2018). We used peak wave period as an indication of longer swell svavelengths, which can transmit more energy jnto the fast

axis and propagation, toward the ice front. We examined the hourly time series of pcean wave variables for January 2022

two different locations, within the corridor and near the Larsen B fast ice front.

'O‘ leted: for

/ ,(Deleted: periods
; (Deleted: past
(Deleted: shelf front

. . . Lo . . . -~ _.~( Deleted: We used mean
iceplate (Robinson and Haskell, 1992; Massom et al., 2018). Mean wave direction s used to assess alignment with the corridor C

‘ CDeIeted: direction of wave
‘(" leted: . Here we

(Deleted: for evaluating

3.2 Satellite Data
3.2.1 Passive Microwave Data

We combined passive microwave data from two successive sensors, namely the Advanced Microwave Scanning Radiometer

for the Earth Observing System (AMSR-E) on the Aqua Satellite, and, the Advanced Microwave Scanning Radiometer 2

(AMSR-2) on the ‘Shizuku’ (GCOM-W1) satellite. JTogether, these passive microwave sensors provide nearly continuous
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The daily overall sea ice concentration data product {Spreen et al., 2008) was used to assess overall sea ice extent and

concentration on the same day (January 19th) for the 12-year period.
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grid cell and each day, the liquid water is detected as present if the 19 GHz horizontally-polarized brightness temperature is

higher than a threshold that is empirically determined in each cell and for each year by using the brightness temperatures during
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the winter (dry snow) season. ‘Melt days’ are defined as days when meltwater is present on or near the ice surface, butactive .- ( ek
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seasonal area changes. break-up timing and extent of retreat, The Landsat 8 and 9 Operational Land Imager product was used

to assess melt patterns during the 2021/2022 austral season and to determine ice flow speeds using a Python-based image

cross-correlation software, PyCorr (Fahnestock et al., 2016). PyCorr measures ice displacement between two images by finding
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in the DEMs and morphological changes, such as the appearance of broad surface undulations suggestive of bottom crevassing,

and changes in calving style at the glacier front. Our image-based grounding position is similar to the partial grounding zone

proposed by Sun et al. (2023). Calving styles of grounded ice often show surface slumping or tilting prior to separation,
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indicative of listric faulting (Parizek et al., 2019), super-buoyancy (Murray et al., 2015) or ice-cliff stresses (Bassis et al,, 2021; - (Deleted: . 2021, Crawford et al. 2021).
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3.2.4 GNSS data from AMIGOS station on Scar Inlet

An Automated Meteorology-Ice-Geophysics Observing System (AMIGOS) unit with a dual-channel GPS receiver was placed
on the Scar Inlet Ice Shelf in February of 2010 (Scambos et al., 2013) as part of the Larsen Ice Shelf System, Antarctica,project

(LARISSA; Wellner et al., 2019). The system provided hourly position data spanning February 2010 through August 2017,

with several data gaps due to power and system malfunctions, fhat were periodically repaired during re-visits. Precision of the

hourly position data was approximately +20 cm due to wind on the tower mounting of the GPS antenna. We used daily, weekly,
and monthly averaged data to evaluate ice flow of the Scar Inlet Ice Shelf over the formation and thickening period of the

adjacent fast ice.

3.2.5 Aerial photography

To evaluate how the fast ice break-up occurred and the potential calving styles of the outlet glaciers, we also analysed airborne
photography. On 31 January 2022, the British Antarctic Survey flew a Twin Otter over the study area with a digital camera

(Panasonic DMC-TZ80e) and a series of photos of the glacier fronts and ice tongue areas were taken along with approximate

geolocation.

4 Results
4.1 Multi-year fast ice in the Larsen B embayment

4.1.1 Formation and evolution of Larsen B multi-year fast ice

continuously covered. Portions of the fast ice broke out and reformed in May 2011 and March 2012. From March 2012

onwards, the fast ice maintained a minimum area of ~3975 kmZ(based on MODIS jmagery). From 2012 to 2016 the fast ice .~ .
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4.1.2 Upstream glacier response to fast ice formation

During the 2011-2022 period of fast ice presence in the embayment, changes in the glacier extents and GNSS data suggests - (l‘ leted: occupation
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Figure 2: Scar Inlet Ice Shelf ice flow speeds from AMIGOS GPS from 2010 to 2017. Blue line is the monthly mean, blue gots

are the weekly means, and green vertical lines are the daily means.

4.1.3 Multi-year fast ice break-up

MODIS imagery shows that new narrow fractures started to form in the fast ice between 18 and 19 January 2022, widening

thereafter, and by 20 January the fast ice arca was densely fractured, and no longer coherent.. By 21 January, floes derived

from the fast ice plate had drifted 9 to 16 km northeast jnto the Weddell Sea, exposing the tributary glacier fronts to open water

(Fig. 1c). The fast ice floes continued to drift away, fully clearing the embayment by 8 February.

Pack ice began to yeappear in the embayment in March 2022, but overall sea ice cover was not persistent through the next 12

y
months. Over the course of the late austral summer into the autumn and winter, MODIS images indicate overall sea ice cover

in the embayment varied in extent and apparent coherency. Open water conditions in the embayment and the area adjacent to //
the AP and James Ross Island persisted through March 2022. Landfast ice did not form in the embayment during the southern /
hemisphere autumn and winter, 2022. In October 2022 the sea ice yn the embayment varied in spatial extent, and began to

decrease significantly in November 2022, and by December 2022 there were minimal floating bergs or pack ice floes. From
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January to March 2023 the embayment was devoid of floating ice and remained open ocean. However, by the end of March

2023, pack ice and fast ice started to reform in the embayment.
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4.2 Potential Attributions of the 2021-2022 Fast Ice Breakout ,(Deleted: climate )

4218 I meteorological conditions

For November 2021 to January 2022, there is no substantial precipitation anomaly in our study area (Fig. S3A). The wind

speed anomaly composites Jndicate a slightly higher than average wind speed during the 2021/2022 melt season, with

December having the largest anomaly, primarily in the Bellingshausen Sea (Fig. S3B). The temperature anomaly over this,

period indicates the Bellingshausen Sea was slightly warmer (~2°C) than the 1979 to 2022 climatological average, whereas

the Larsen B embayment was up to 4°C warmer (Fig. 3).
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Figure 3: ERA-5 surface_air temperature anomalies around the Antarctic Peninsula. The blue box is the area of grid cells

used for the foehn wind analysis (Fig. S4).

We also looked at ¢he January 2022 mean hourly values of several meteorological variables that indicate foehn wind events;

temperature, windspeed, wind direction, relative humidity, and piet ablation for the Larsen B region (blue box, Fig. 3), (Fig.

S4). Five identified foehn gvents occurred from 17 to 21 January 2022, two prior to the fast ice break-out, one during that

event, and two after,it. These events likely enhanced surface ymelting on the fast ice, potentially augmenting the break-up pf

the ice in the post-break-up days (19 and 21 January) and dispersing the fast ice floes northeastward in the following weeks.
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Since ARscan be linked to foehn events and therefore to increased surface melting (Bozkurt et al., 2018), we also investigated
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AR occurrence in the period of the fast ice break-out event. A time series of IVT in the Larsen B region jndicates that IVT

associated with an AR event from the northwest begins to increase on 19 January and peaks on 20 January 11:00 UTC (Fig.

#aand b: Wille et al., 2022). IVT remained high until 22 January, when the AR eakened and dissipated. This event occurred * 1

‘ [Deleted: melt from latent heat and enhanced downwelling

longwave radiation...

simultaneously as the series of foehn events from 19 to 22 January, suggesting the AR led to the foehn winds that occurred
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Figure 4: a) time series of IVT for January 2022 at 65.25°S, 61.25°W. b) map of ERA-5 IVT in the southern hemisphere at

11:00 UTC on 20 January 2022, during the peak IVT at Larsen B. The AR is identified as a long filament of high IVT that

extends from the eastern Pacific across the Antarctic Peninsula and into the Atlantic Ocean. Red shading indicates the arrival

of the swell and fast ice break-up. Blue shading indicates the duration of the AR event over Larsen B,

4.2.2 Surface melt

Figure 5 shows cumulative melt days for each melt season from 2012/2013 to 2020/2021 over the Larsen B multi-year fast ice

and Scar Inlet Ice Shelf, derived from AMSR-E/2 passive microwave data. Fig. 5a shows a map of the grid cells used in the
analysis, as well as cumulative melt days for the 2019/2020 season, 2020/2021 season (i.e. the two melt seasons preceding the

break-up event), and the mean cumulative melt days for each season from 2012/2013 to 2020/2021. We do not include the

2021/2022 melt day data in Fig. 5a because of the mid-season break out of the fast ice jn fhat summer. Maps of cumulative

melt days for all melt seasons are available in Fig. S5. Fig. 5b shows the spatially-averaged melt days over the study area, as
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well as the cumulative days when the melt area was 100% of the study area, for nine melt seasons leading up to the break-up

event, as well as the melt season with the fast ice break-out (2021/2022).,

The 2021/2022 season did not have a particularly long or spatially more extensive melt season relative to the previous nine

melt seasons. Of the years studied, 2019/2020 had both the longest melt season and the one with the highest number of days

with 100% melt area, nonetheless the fast ice survived this season, as well as the preceding high-melt years.

In addition to our analysis of passive microwave data (above), which may indicate the presence of surface meltwater ponding

(e.g. Picard et al., 2022), we also analyzed optical satellite images for evidence of surface meltwater ponding, Landsat 8 images

in November and December 2021 show the surface of the fast ice was extensively covered with melt ponds (Fig. S6). However,

by January 2022, the surface melt ponds on the fast ice appeared to have refrozen, and melt pond gxtent was reduced (Fig.,S6).
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Figure 5: Cumulative melt days derived from AMSR-E/2 passive microwave melt data. a) Cumulative melt days over the fast
ice area in the Larsen B embayment (area within solid red lines) and over the Scar Inlet Ice Shelf (area within dashed red
line) for the 2019/2020 and 2020/2021 melt seasons, and the mean from 2012/2013 to 2020/2021. b) Spatially-averaged melt
days (blue shades) and cumulative days of 100% melt area (purple shades) over just the Larsen B embayment fast ice (solid
red lines in panel a) from 2012/2013 to 2021/2022. The dark purple and dark blue bars show cumulative melt days from just

1 October through 18 January (i.e. the,data available for the 2021/2022 season), and the light purple and light blue bars show

cumulative melt days from 1 October through 31 March.
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4.2.3 Regional Sea ice Cover

JFigure 6a displays aynapping of sea ice concentration from AMSR-E/2 data in the Weddell Sea on 19 January 2022. Fig. 6b

(" I d. Flg

shows a time series of overall sea ice area (concentration that is greater than 15% multiplied by area of pixel) for the date of
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19 January for each year from 2010 to 2022 jn a selected region (gray box in Fig. pa; 2011/2012 did not have AMSR-E/2 - e

sensor data on this date; MODIS imagery shows extensive sea ice cover in the Larsen B fast ice front area through this time).

The selected region represents a potential ocean swell corridor leading to the Larsen B embayment from 2010 to 2022 (see

Section 5.2, also Teder et al., 2022). For the 8-year period (2013 to 2020 inclusive) the overall sea ice area in this region of
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the northwest Weddell Sea was over 125,000 km? (>50% of the box area). In 2011, sea ice area was just 100,000 km? on 19

January; however, we note that the fast ice formed later in this year (March). The overall sea ice area dropped in 2021 to 75,000

km?, and in 2022 its area was just below 40,000 km?. As Fig. 6a shows, a corridor is present along the eastern side of the
Peninsula in January 2022, which opened on ~8 January 2022 according to the MODIS and AMSR-E/2 record. This pathway,
which allows for wave action to access the front of the Larsen B fast ice, had not been present since the fast ice’s formation in
2011 (Figs. 6b and S7).
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Figure 6: a) Pack sea ice concentration and distribution map on 19 January 2022 from AMSR-2 data (Spreen et al., 2008).

Small red squares show the location of the ERA-5 wave height grid cells (Fig. 7). The gray box is the region selected for the

overall sea ice area in 6b. The white arrow denotes the wave propagation direction on 19 January ERA-5 data, b) Overall sea
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4.2.4 Wave action

Examining both ERA-5 and WaveWatch-IIT wave data, the first large swell able to pass through the ppen-ocean (sea ice-free) (Deleted: wave )
corridor and reach the Larsen B fast ice edge occurred on 18 and 19 January (Figs. 7 and S8). In the early hours (UTC) of 18 (Deleted: S6 )
January 2022, the significant wave height averaged ~0.1 m in the selected grid cell region. By the afternoon on 18 January the
average wave height yose steeply to a maximum of 1.75 m near Larsen B and to over 2 m near James Ross Island ~150 km to (Deleted: then )
the northeast (red boxes, Fig. 6). Simultaneously, the peak wave periodjncreased to ~5 s, Jndicating a_wavelength equivalent (l‘ leted: rose )
to ~40 m. The wave propagation direction was bearing ~250° + 25° through this period, similar to the orientation of the open (Deleted: which suggests )
corridor in the pack ice. There were jo events in November or December 2021 that included both a long peak period and a (Deleted: of )
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have peak periods consistently less than 6 s and wave heights below 1.4 m (Fig. S8 and S9). Furthermore, there were no other ‘(Delete d: )
times during January 2022 when the wave swell had both a long peak period and high significant wave height (Fig. 7). Abrupt ‘(Deleted: S7 )
shifts in peak period and significant wave height (see Methods) are evident when the wave corridor opens near James Ross
Island (gray band 8 Jan 2022) and when the event occurs (gray band 18 Jan 2022), as well as when the wind direction changes
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Figure 7: ERA-S5 significant wave height (blue) and peak period (red) for both the Larsen B area (solid lines) and near James
Ross Island (dashed lines) during January 2022. The red and dark red lines and the blue and light blue lines correspond to
the peak period and significant wave height, respectively. The opening of the wave corridor and fast ice break-up are denoted

by the gray vertical bands.
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4.3 Initial glacier response to fast ice break-out

4.3.1 Retreat of glacier fronts

(l‘ leted: Initial retreats

Four glaciers along the Larsen B embayment coast responded almost immediately to the fast ice break-out. Crane and Jorum

(Deleted: landfast ice and

Glaciers exhibited similar responses, losing most of their floating ice tongues within days of the fast ice breakout (Fig. 8a) and
calving a number of large (several km?) full-thickness tabular icebergs. Once the floating tongue portion was removed, both

glaciers underwent buoyancy-driven calving and a tidewater-style retreat at their grounding zones, jndicated by the presence

‘(Deleted: experienced varying immediate responses

of toppled icebergs in optical images and high-backscatter iceberg surfaces in Sentinel-1 data. Scattering intensity is related to
surface roughness as well as how much melt has affected the surface of the berg; freshly toppled cold bergs will have a brighter
surface, whereas tabular bergs that have been exposed to surface melt will display a decreased backscatter intensity (Young et
al., 1998). Punchbowl Glacier began calving in a style that appears to be buoyant full thickness calving (Murray et al., 2015),
indicated by toppled dark blue icebergs. Unlike Crane, Jorum, and HGE, Punchbowl did not readvance into the embayment
during the fast-ice occupation. Hektoria and Green Glacier retained a 13 km extended thick (greater than 300 m) floating

tongue after the immediate break-out, until March 2022. However, at this point their floating ice arcas also underwent full-

(l‘ leted: main upstream

(Deleted: ). They calved

A NN

(Deleted: evident

C" leted: Once Hektoria and Green Glaciers began losing

thickness tabular calving with occasional toppled icebergs (Fig. 8). From April to October 2022 the ice fronts were relatively
stable, but rapid retreat reinitiated in November 2022. The calving style resembled tidewater glacier retreat for grounded ice
with buoyant calving, similar to the Rhss Glacier response from the loss of the Prince Gustav Ice Shelf (Glasser et al., 2011)

or calving regimes at Helheim Glacier, Greenland (Murray et al., 2015).

In the weeks and months following the fast ice break-up, Crane, Jorum, and Punchbowl glaciers continued to retreat. By 8

. (Deleted: start of the
o (Deleted: greater than

February 2022 the Crane Glacier floating front (defined here as the limit of contiguous ice > 100 m in thickness; consistent .-~

(Deleted: 2022
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(Deleted: merged floating tongue in March 2022, the

with Needell and Holschuh, 2023) had retreated more than 6.5 km and was still calving large tabular bergs (several km? and >

- (Deleted: greater than

300 m thick, based on WV DEMs; Fig. 8a). From 8 February until 11 March 2022 only 400 to 800 m of retreat occurred. Crane

continued its episodic periods of getreat of several hundred ymeters,at a time throughout the 2022-2023 summer seas

8a). Its retreat totalled ~11 km, of which possibly 1 to 2 km was grounded ice using this study’s grounding zone or no grounded 3

on (Fig.

‘ (Deleted: its front until November 2022 when it lost only a few

ice using Rott et al. (2018)’s, 2016 grounding line (Fig. 8b), Similar to Crane in calving style, the Jorum Glacier main trunk
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lost ~5 km of floating ice and its (former) tributary branch glacier lost ~6 km. Punchbowl Glacier, in contrast, has only lost a

few hundred meters of its ice front as of May 1 2023.

Hektoria and Green Glacier responded to the fast ice break-out in later months. Hektoria Glacier had an extended thick (> 300

m) floating tongue,that persisted until 12 to 17 March 2022, when it retreated ~7 km (Fig. 8c). From 26 to 30 March, Hektoria’s

‘EDeleted: . In December 2022 another 600 m were lost during two

separate events. Crane briefly stabilized from January to March
2023, yet another 800 m retreat occurred from 13 March to 7 April
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floating tongue retreated another ~6 km, exposing an arcuate ice front. From April 2022 until August, Hektoria’s ice front

retreated ~1 km, This retreat is inferred to be the start of the grounded ice retreat based on a change in calving style and surface
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| 68 by 14 November and another 1.2 km by 30 November 2022. In December 2022, Hektoria underwent another series of retreats
69 totaling ~4 km. From 17 January to 15 March 2023, another ~1.5 km retreat into the fjord occurred, and Hektoria is still
770 actively retreating as of April 2023 and has retreated a total of ~25 km, of which ~10 km may have been grounded ice using .- (Deleted: (Fig. )

71 this study’s grounding zone or 1 to 5 km of grounded ice using Rott et al., (2018)’s 2016 grounding line (Fig. 8d). Green

72 Glacier has also retreated substantially but not as far into its fjord. Following a similar timeline to Hektoria, Green has retreated
73 ~18 km total.
74
-
o
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Landsat
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— 2021-11-21 - 2022-03-19 2022-08-27 2022-11-30 2022-12-25 — 2023-03-15
75 = 2022-03-11 2022-04-08 2022-11-14 2022-12-08 2022-12-28 —— 2023-04-12
76 Figure 8: Yellow points is Rott et al., 2018’s grounding zone and black dashed lines is this study’s inferred grounding zone. — 2021-11-21 —— 2022-03-19 2022-(
77 a) Crane Glacier retreat fronts from November 2021 to April 2023, length scale is the same as panel b b) Crane Glacier with -~ 2022-03-11 2022-04-08 2022~
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11
112
13

pre-break out terminus position and April 2023 terminus position ¢) HGE system retreat fronts from November 2021 to April
2023, length scale is the same as panel d d) HGE system with pre-break out terminus position and April 2023 terminus position.
For a) and c) the background is a Landsat 8 image from 21 November 2021, and for b) and d) the background is a Landsat 9
image from 15 March 2023.

4.3.2 Glacier centerline speed changes

Initial ice flow speed profiles along near-centerline tracks of Crane, Jorum, Green and Hektoria glaciers all show an increase

in speed of various magnitudes since the fast ice break-out event. For all the glaciers besides Punchbowl, the floating portions

increased in speed dramatically immediately after the break-out event while the grounded portion of the glaciers took many

months to be affected, according to this study’s grounding zone estimation (Fig. 9a-c; gray shaded bands on profiles and dashed

white lines on insets). Additionally, the observed speed profiles in the 26-month period (January 2021 to March 2023) show
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for December 2022 and January 2023 agree with the general trend (Fig. 9b; light brown and brown solid lines). Hektoria
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Glacier’s Landsat-derived ice speeds show a velocity increase from September 2022 to March 2023 from 300 m yr! to 1200

to 1400 m yr'! (Fig. 9c; light brown and brown solid lines). Both Green and Hektoria are still undergoing retreat and

acceleration as of March 2023.
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Figure 9: Monthly averaged ice flow speeds_along the IceBridge flight centerlines, derived from Sentinel-1 speckle tracking
from Alaska Satellite Facility HYP3-pipeline, solid-colored lines. Jmage pair flow speeds from Landsat imagery (using

PyCorr) are yndicated by colored solid dots. Gray bands on profiles and dashed white line on image insets show inferred

grounding zones, with the Rott et al. (2018) grounding zone of 2016 as yellow points on insets. a) Crane Glacier velocity

profile. b) Green Glacier velocity profile. c) Hektoria Glacier velocity profile, The alongztrack distances are set at gn arbitrary

point well upstream of each glacier’s grounding zone. Blue dashed lines are reference years Dec 2021 and Dec 2020, prior
to break-out. Background image is a Landsat 9 image from 06 October 2022.

4.3.3 Elevation changes

We used ICESat-2 altimetry and WV-1, -2, and -3 stereo-image DEMs to assess elevation changes of the Larsen B embayment

glaciers from 2017 to present. For each glacier, we gvaluated three reference points along the near-centerline to these changes.

Lower Crane Glacier (red box, Fig. 10) may have thinned by up to 16 m immediately after the fast ice break-out, however the

trend is incomplete due to the glacier’s rapid retreat and calving, This abrupt thinning may have been a consequence of a
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Holschuh’s (2023) findings. Thinning may have now begun in those regions, however the data are inconclusive, as the thinning

is only 1 to 3 m as of February 2023, which is within the neasurement error, and surface roughness variations on the glacier.
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127 the initiation of thinning of the glacier is uncertain. However, from July 2022 until late December 2022, ~5 m of the total 9 m
128 of thinning occurred.
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zone inferred in this study. The pink box in the study area inset is the area depicted for Green Glacier and the orange box is

Hektoria Glacier. The time series plot corresponds to the area of the box of the same color. The gray band indicates the date

of the fast ice break-out event.

5 Discussion

Figure 12 summarizes the chronology of events in the 22-year period from 2001-2023 of the Larsen B embayment and the

tributary glaciers. We document the changes that have occurred during the two break-out events and how the glaciers and the

Scar Inlet Ice Shelf have responded to those events. Below we discuss the conditions and aftermath of the 2022 event in light

of our findings and related literature.
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2002
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2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021

2001

. 2022
2023 -

[l High melt year on fast ice
[l High amount of melt ponding in late 2021

Observation

Larsen B Ice Shelf Breaks-Up

Crane Glacier speed up 4x

HGE speed up 8x

HGE slows, reduced thinning rate
Crane Glacier develops 100 m+ cliffs
& rapidly retreats

Crane Glacier reaches peak velocity

Landfast Sea begins continuous 11-year
presence in Larsen B embayment

Glaciers stabilize & grow thick ice tongues
Scar Inlet Ice Shelf decelerates

B Fast ice breaks-up
Glaciers accelerate, thin, and calve

Interpretation

Hydrofracture driven break-up
Significant buttressing of glaciers by ice shelf
Marine Ice Cliff Instability?

Visco-elastic flow outpaces plastic deformation

Thinning of glacier brings it close to
flotation & reactivates rapid retreat

Combo of +SAM, ASL, -IPO, etc.

Landfast ice suppresses calving &
buttresses Ice Shelf

Melt not primary driver for break-up
because fast ice did not break up

Weakened the fast ice

Ocean swell ultimately caused collapse
Fast ice important for glacier stability

Dataset/Paper

Scambos et al., 2003; Rignot et
al., 2004; Banwell et al., 2015

Rignot et al., 2004; Berthier et al., 2012;
Wauite et al., 2015;

Scambos et al., 2011; Needell and
Holschuh, 2023

Scambos et al., 2011; Wuite et
al,, 2015

Landsat, Wuite et al., 2015

MODIS; Christie et al., 2022

Landsat; GPS data (Fig. 2); Icesat-2
and WV (Fig. 10 & 11)

AMSR/E passive microwave
data; Fig. 5.

Landsat (Fig. S4); MODIS (Fig. SV1)
See Discussion
See Discussion

*Jan 2022

Feb 2022
Mar 2022
Apr 2022
May 2022
Jun 2022

Jul 2022
Aug 2022
Sep 2022
Oct 2022
Nov 2022
Dec 2022
Jan 2023
Feb 2023
Mar 2023

Observation
~8 Jan Sea ice free corridor opens
Fast ice breaks up, glaciers lose their
floating tongues

Ml HGE starts calving at grounding zone*
Glaciers accelerate

Sea ice leaves, calving & retreat resumes

[l Crane starts calving at grounding zone*

l Crane Glacier speed at ~0.5x (40%) Hektoria

& Green Glacier speed at 3x pre-break out
[l Green Glacier thinned by 8-10 m
Sea ice comes into embayment

* Grounding zone in this paper

Interpretation
Swells are able to reach fast ice
High long period swell reaches ice front; AR
& foehn events aid in dispersal of floating ice;
glaciers tongues were buttressed by fast ice

Glaciers respond to loss of fast ice &
glacier tongues

Temporarily restabilizes glaciers;
prevents calving & retreat

Glaciers react to new stress regime
& accumulated ice flux; exposure to
open water enhances retreat

Removal of fast ice has significant
affects on glacier stability and dynamics

Sea ice & iceberg mélange temporarily
stabilizes glacier fronts

Dataset/Paper
AMSR/E (Fig. 5); MODIS

ERA-5 (Fig. 7); WaveWatch (Fig. S6);
Landsat; WV; Fig 8.

Landsat; WV; Fig. 8
Sentinel 1 velocities; Fig. 9

Landsat; WV; Fig. 8

MODIS, Landast, WV, Sentinel 1
velocities

Sentinel 1 & Landsat velocities; WV
DEMs; ICESAT-2

MODIS, Landsat, WV

Figure 12: Schematic of the chronology of events from 2001-2023 of the Larsen B embayment region discussed in the text.
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5.1 Meteorological Conditions and Modes of Atmospheric Variability

The AP climate is jnfluenced by several Jarge-scale ynodes of atmospheric variability. These patterns are drivers of the
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formation and demise of pack ice, fast ice, the mass balance and stability of the glaciers and ice shelves. Climate patterns and
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variability are driven by several modes with a variety of time scales, e.g., the Interdecadal Pacific Oscillation (IPO) at 10 to
30 years and SAM phase oscillations, changing on the scale of weeks to months. The IPO was in a negative phase from 2000

to 2014, favoring an increase of overall sea ice extent at ~0.57  0.33 x 10° km? per decade (Meehl et al., 2016). Additionally,

slightly cooler conditions around the AP in the 2010s limited the area of melt ponding on the Scar Inlet Ice Shelf and the

northern Larsen C (Cape et al., 2015; Bevan et al., 2018). This situation paired with intensified cyclonic circulation in the

Weddell Sea (Christie et al., 2022), which may be broadly favorable for the formation of the Larsen B embayment fast ice,and

advancement of the glacier tongues (Fig. 12), yet due to local variability it can be difficult to pinpoint its exact drivers in a
specific season. It appears the IPO reversed in 2015/2016 but that remains to be confirmed (Li et al., 2021). The SAM index

has been trending toward more frequent periods of positive phase for many decades (Kwon et al., 2020; Li et al., 2021). A
positive SAM is generally associated with a deepening of the Amundsen Sea Low, which subsequently enhances northwesterly

flow across the AP, bringing warm air masses and an increase in foehn events into this region (Li et al., 2021 Turner et al.,

2022). A positive SAM is also correlated with AR events, due to enhanced moisture fluxes towards the Antarctic Peninsula /
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and a more easterly storm track, which can increase warming on the eastern (lee) side of the Antarctic Peninsula during AR-

driven foehn events (Wille et al., 2021; Shields et al., 2022; Wille et al., 2022). Strong westerly winds increase pack ice drift /
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eastward and northward, exposing the AP’s eastern coast and ice fronts to open ocean. This may have caused the low sea ice

cover in the Weddell Sea in summer 2021/2022 and Jack of pack ice,in the corridor region in January 2022 (Turner et al., /

/| area (i.e. all of the fast ice) were also lower than in any other season

2022).

We found that the climate of the Larsen B region was anomalously warm from November 2021 to January 2022. However,

despite the climate being warmer, the number of melt days, and mean areal extent of melt, over the fast ice derived from the

passive microwave data in the 2021/2022 season were not a record,(Fig. 5), According to the optical imagery, melt ponds were |
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neither surface melting, nor related hydrofracturing of pre-existing melt ponds in the thick glacier tongues, were a direct cause

of the 19 January fast ice fracturing or the subsequent break-up, although they do point to a warmer (and likely weaker) fast

ice cover at mid-summer of 2021/2022.
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5.2 The fast ice break-out event
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the fast ice was several meters thick, wave height was nearly 1.75 m, and the wave period at the time of the event was 5 to 6
s, corresponding to wavelengths of order of 40 m (Fig. 7). The resulting strains can weaken the outer margins of the fast ice or
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for the collapse of the Parker Ice Tongue.
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Shelf'in 2021 (Francis et al., 2022), and Larsen D in 2020 (Christie et al., 2022). We suggest further research to investigate the
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though they were readvancing and stabilizing prior to the 2022 event they were still in an imbalanced state (Seehaus et al.

2023), additionally the ice shelf was old and thick whereas the fast ice was much younger and an order of magnitude thinner.

However, despite these differences, the similarities in the tributary glacier response to the two events are important to identify.

Crane Glacier experienced significant changes after the Larsen B Ice Shelf disintegration and fast ice break-out. In the three

years following the Larsen B Ice Shelf disintegration event (2002 to 2005), the Crane Glacier ice front and grounding zone

retreated 18 km into the fjord, and the ice front height increased from 60 m to just over 100 m (Scambos et al., 2011, De Rydt

et al., 2015). Simultaneously, the glacier trunk upstream of the ice front lost elevation at a rate of 35 m yr' (Shuman et al.,

2011). As of March 2023, the 2022 event has caused Crane Glacier to retreat ~11 km in 14 months, (Fig. 8). However, - (l‘ leted: Thus far
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20 years, although the magnitude of change was greater in the immediate aftermath of the 2002 event,(Fig. 12).
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Both Crane and Hektoria experienced rapid changes after both the 2002 and 2022 events. The speed up of both glaciers was

immediate, yet gradual, as the evolution of the system adjusted to new geometry, particularly the glacier bed. This gradual

slightly delayed increase in velocity may be why Sun et al. (2023) did not capture the acceleration as their velocity data ended

in July/August 2022 and the majority of the acceleration took place after that (Fig. 9). However, that is along the same timeline

of changes experienced in the 2002 event as the first velocity data was only available December 2002, nine months after the

ice shelf break-up (Wuite et al., 2015). Comparison of the speeds, thinning, and retreat rates, reveals that the 2002 event had a

greater impact on the glacier dynamics within the first year of the loss of ice shelf/multi-year fast ice buttressing. This is an

expected response, as the loss of the Larsen B Ice Shelf should result in a higher de-buttressing effect than the more recent loss

of the much thinner fast ice and thick glacier tongues.

6 Conclusions

The climate of the AP has been warming over the past several decades (Vaughan et al., 2003; Zagorodnov et al., 2012),
interrupted by a decade-scale cooling that coincided with the formation of the fast ice in 2011 (Turner et al., 2016). During the

2021/2022 summer, the Larsen B region of the AP experienced anomalously high temperatures, and strong westerly winds
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Antarctica’s coastline is fringed with multi-year fast ice (Fraser et al., 2021) that is likely buttressing large glaciers around the
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continent, As the climate continues to change (Gilbert and Kittel, 2021), Antarctica’s, fast ice may become more, susceptible to
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