
Authors point-to-point responses Referee 'Comment on tc-2023-80', Anonymous Referee #1, 29 
Sep 2023 Please find the author’s responses in blue below the reviewer’s comments. 
 
Many thanks for the review, which helped to improve the quality of the manuscript. 

The authors have demonstrated commendable expertise and innovation in their work by introducing 
CNN in the field of radar altimetry retracking. Their research represents a significant contribution to the 
field, offering valuable insights and promising results. By employing CNN, the authors have opened 
new possibilities for improving the accuracy and efficiency of altimetry data processing, and possibly 
(not addressed) speeding up otherwise time-consuming retracking. The paper introduces this 
innovative approach and provides convincing evidence of its advantages. While comprehensive 
research is crucial for presenting a well-rounded perspective, the excessive length of the papers can 
be challenging for readers to digest. One suggestion would be to separate the retracking from a 
second paper on the applications or move some of the backgrounds to an appendix.  This being said, I 
only have minor comments on the paper. 

Thanks for this suggestion. We are aware of the length of the paper but we don’t want to split 
the manuscript in a retracker and application part. We need to show the improvement which 
can be derived with our new approach and therefore need to apply it to data and compare to 
other products. We therefore think that we cannot decouple the application part from our new 
method.  

One aspect of AWI-ICENet1 which could be addressed is the possible increased efficiency in the 
processing time. As the authors have great experience in retracking radar altimetry data, it would also 
be beneficial to highlight the efficiency of the AWI-ICENet1 compared to other methods. We are often 
faced with very long reprocessing times from the agencies.  

Thanks for the advice. We added a table in section 3.1 comparing processing times of different 
retracking methods and inserted the following text. 

“As perfomance test we run the retracking on one of the CPU and GPU compute nodes of the 
high performance cluster at the Alfred Wegener Institute, Helmholtz Centre for Polar and 
Marine Research. We applied next to the TFMRA retracker the TCOG retracker and an adapted 
version of the functional fit of the ICE2 retracker as given in Legresy et al. (2005). To estimate 
the leading edge width (LEW) based on TFMRA and TCOG we run the retracking for different 
threshold levels (THL), reaching from 5% to 80%. For each THL a retracked position (RT) is 
determined. The LEW is the inverse of the linear regression coefficient and is estimated for 
each waveform as follows: LEW = 1/m with THL = m ∗ RT + n. 

 Results of the performance test are shown in Table 2.” 

 

In general, the caption for the many figures is very shallow, please read through them and elaborate 
on them, so a reader who is not reading all 61 pages can follow the main conclusions of the figures. 

Yes, we do understand that it is beneficial to add more info into the figure caption and we 
followed the advice in the revised version and added more content to most of the figure 
captions. 

L2: “long-term observations of surface elevation change are required to”, agree with the meaning but I 
would suggest that you also acknowledge other methods and hence remove the “Surface” 

https://editor.copernicus.org/#RC1


We fully agree that it is important to highlight other methods, too. Many thanks for pointing this 
out! We changed the sentence in the revised version. 

“This can be achieved by three different methods: Directly by measuring regional changes in 
the Earth's gravity field using the GRACE(FO) satellite missions, or indirectly by measuring 
changes in ice thickness using satellite altimetry, or by estimating changes of the mass budget 
using a combination of regional climate model data output and ice discharge across the 
grounding line based on multi-sensor satellite radar observations of ice velocity (Hanna, et.al., 
2013). Satellite radar altimetry has been used to measure elevation change since 1992 using a 
combination of various missions”   

L5: The snow penetration is an issue in most places, just leave this sentence open and remove 
“especially over the…” 

We agree, unfortunately, it is an issue in most places! We removed ‘especially over ice sheets’ 
in the revised version.  

L15: This shows a broader application and suggests writing “This technique provides new 
opportunities to utilize convolutional neural networks in the processing of satellite altimetry data, which 
can be applied to historical, recent, and future missions.” 

Thank you, we have changed the sentence accordingly. 

L21: missing reference at “2010 onwards” 

We added a couple of references here: The sentence reads now: 

“The non-linearity of mass loss from Antarctica is driven by West Antarctica, where glacier 
acceleration and retreat has caused an increasing contribution from 1992 onwards (Rignot et 
al., 2002, 2014; Mouginot et al., 2014; Scheuchl et al., 2016; Milillo et al., 2022;Christie et al., 
2023)” 

L30 may start with “Ku-band satellite altimeters…” as the mentioned satellites are all Ku. 

Thanks, we followed your advice. 

L40 Why add the PLRM, this is a pure post-processing product. 

Thank you, removed this sentence as it is not necessary in the context here. However, we think 
the PLRM data is still very useful as it allows comparing SAR and LRM and enable to link older 
missions to the new SAR generation. 

L43: ICESat-2 operating at green-wavelength is penetrating the snow. And add references for ICESat-
2. 

We added references for ICESat and ICESat-2.  

To our knowledge there is little known about penetration of green lasers into snow/ice . A TCD 
paper of Studinger et.al. (currently under review) propose a “differential penetration which 
likely exist in lower-level ICESat-2 data products” at least over thin or finger rafted sea ice 
(https://tc.copernicus.org/preprints/tc-2023-126/tc-2023-126.pdf). However, their modeling 
approach suggest only minor penetration in dry snow.  

We changed the sentence to:  

https://tc.copernicus.org/preprints/tc-2023-126/tc-2023-126.pdf


“Next to the radar altimeters, two laser altimeters surveyed polar areas: NASA’s ICESat-1 
operated from 2003-09 (Zwally and Thomas., 2014) and since 2018 ICESat-2 is operational 
(Markus et al., 2017; Smith et al.,2020). The great advantage of laser altimetry is the high 
precision of a single distance measurement and its low penetration into dry snow (Smith et al., 
2020; Studinger et al., 2023).” 

L46: please elaborate on the sentence “Because…”, 

We reformulated the sentence as follows: 

“As we use data from all six available laser beams and a three-year measurement period from 
January 2019 to December 2021, the data coverage is exceptionally good. The advantages of 
high precision, dense sampling, small footprint size and low penetration depth outweigh the 
disadvantages of occasional data loss due to cloud cover. Therefore, we use ICESat-2-based 
estimates of rates of elevation change as a reference to compare our radar altimetry-based 
results.”  

L73: the common abbreviation is CNN, please consider using this 

We have chosen ConvNet on purpose and would prefer to use it in our manuscript. The reason 
is the following: Both CNN and ConvNets are common abbreviations / names of the same 
machine learning framework, e.g. Tan and Le, 2020, “EfficientNet: Rethinking Model Scaling for 
Convolutional Neural Networks” uses ConvNet as abbreviation for Convolutional Neural 
Network. Non-academic examples of the broader community showing that both terms are valid 
include  

IBM: https://www.ibm.com/topics/convolutional-neural-networks 

MathWorks: https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html 

SuperAnnotate: https://www.superannotate.com/blog/guide-to-convolutional-neural-networks 

We prefer ConvNet since we agree with large parts of the Machine Learning community that a 
too strong emphasis on “neural” (as referring to the visual cortex of mammals) is misleading 
and bears risks. As a consequence, several leading examples (see a few below) even prefer 
“Convolutional Networks” instead of “Convolutional Neural Networks” which is not only more 
precise but also historically more correct as this was the term originally used (see e.g. LeCun 
and Bengio, 1995, “Convolutional Networks for Images, Speech, and Time-Series”): 

LeCun et al.,, “Character-level Convolutional Networks for Text Classification”, NeurIPS 2015 

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014 

Long et al., “Fully convolutional networks for semantic segmentation”, CVPR 2015"  

L124: why exclude Greenland? 

We selected Antarctica to build the training data set, as it covers various kinds of flat and 
complex topography. Finally, we applied the saved model to observed CryoSat-2 waveforms 
also over Greenland. Results are very promising and show that the training over Antarctica is 
sufficient to improve the retracking over both ice sheets. As we show and discuss in the paper 
the new approach can also handle the melt event in 2012. Although possible, we therefore do 
not see the need to include Greenland in the training of the CNN. 



L128: to help the reproducibility of the study please give more insights into the chosen backscatter 
cross-section values. 

sigma_0 = 10 dB . At this stage we didn’t consider any heterogeneity nor angular dependency 
of sigma. We changed the text in the revised version to: 

“For simplicity σ0 (θ) = 10 dB is chosen to be homogeneous and without any angular 
dependency within the radar footprint and the ...” 

 

L144: “rate in the following”, the paper has a couple of these please proofread the paper once more. 

Thank you, we proofread and corrected spelling mistakes. 

L153 What is the resolution of the applied DEM in the modelling?  (it might not fit here but should be 
discussed in this relation) 

We used the REMA DEM with resolution of 1 km and slightly smoothed the DEM with a kernel 
of 3km to mirror the effect of an integrated signal within the pulse limited footprint. We tested 
different smoothing kernels to best match observed CryoSat waveforms. 

We added the following sentence: 

“As input DEM we used a slightly smoothed (kernel size of 3 km) version of the REMA DEM 
(Howat et al., 2019) with pixel resolution of 1 km to mirror the effect of an integrated signal 
within the pulse limited footprint.“ 

L177: move the specific tensorflow package to the acknowledgement, and add a reference to this 
library. 

Thanks for this advice. We added the following text and a reference in the acknowledgments of 
the revised version: 

“The network was trained using a NVIDIA A100 SXM4 80 GB GPU videocard and the tensorflow 
2.15.0, keras 2.15.0 package (Abadi et.al., 2015). Waveform retracking was applied on AMD 
Rome Epyc 7702 cores using tensorflow 2.15.0, keras 2.15.0 package.” 

L189: With possible differences/drift in Bs in the processing baseline only one should be used. For 
consistency use E.   

We did rerun our processing using Baseline E and updated all products, figures and tables 
accordingly as Baseline E is now fully released.  

L194: add a reference for ATL06.005 

We added a reference to the newly released ATL06.006 product. In addition, we did rerun our 
ICESat2 processing and updated all figures and table accordingly. 

L196: Add the resolution used. 

Thanks. We added this information in the revised version. The new sentence reads: 



“Instead of using the quality flag given in the ATL06 product we filter the data based on the 
version 2 of the REMA Antarctic elevation model in 1 km pixel resolution (Howat et al., 2022) 
and version 4.1 of the ArcticDEM mosaic in 500 m pixel resolution (Porter et al., 2023)” 

L210: so it is the 2 km product which is used, why is this chosen? 

We updated our processing using a variable search radius. We found, that this is the best 
choice to have enough data points to apply a solid regression but with less uncertainties due 
to unresolved topography within the search radius, low processing cost for densely covered 
areas and a reduced number of unobserved pixels. We added a more detailed description in 
the revised version. 

“The interpolated elevation anomaly product and rates of elevation change (dhdt) are 
generated using a slightly different approach as described in e.g. McMillan et al. (2016); 
Schröder et al. (2019); Nilsson et al. (2022). For each pixel with a size of 1 km x 1km we collect 
all geo-referenced data points within a variable distance ranging from 500 m to 2500 m (step 
width 500 m) and correct for topography using a bilinear interpolation of the REMA-DEM and/or 
ArcticDEM, respectively, rather than fitting any kind of linear or quadratic surface as McMillan 
et al. (2016); Schröder et al. (2019); Nilsson et al. (2022). The variable search radius is enlarged 
step wise until a threshold of number of points is reached. This threshold is defined to match 
at least 75 % of the selected time period (n_months) and the following criteria: For CryoSat-2: 
nmonths ∗ 12 and and due to the higher data coverage of six beams and less along track point 
spacing for ICESat2: nmonths ∗48 . This kind of processing allows to minimize uncertainties 
due to unresolved topography within the search radius but keeping enough data points for the 
linear regression as the search radius is tried to keep as low as possible. Processing costs for 
pixels with very dense data coverage in the interior of Antarctica are kept low as only a small 
radius and thus less data points are selected. At the same time less unobserved pixels in areas 
of coarse data coverage remain as the search radius can be enlarged up to 2500\,m. We then 
estimate rates of elevation change using a linear regression for each pixel with sufficient data 
coverage (criteria: max(time)−min(time) > 50 % of selected time period and npoints > nmonths), 
again without using additional information such as LEW, TeS, backscatter or seasonal 
components.”  

L221: “the correction adapted from Nilsson et al. (2022)” elaborates on what is used. 

We will be more precise and added the following sentence:  

“We calculate different variants of corrections for transient penetration effects by using 
empirical linear relations between Delta h and LEW, Delta h and backscatter, or Delta h and 
LEW and backscatter. Instead of doing this in the context of multi-parameter fitting as in e.g. 
Flament .. Simonsen .. Schröder, we do it on the level of spatially interpolated monthly 
anomalies of Delta h , LEW and backscatter, following the approach of Nilsson et al. (2022). We 
assume that changes of electromagnetic properties ..." 

F5: add a plot of the model vs. test point cloud. Maybe retracked range vs model range.  

We can add the following scatter plot, but we don’t really see why this will help to further 
evaluate the retracker performance as already shown in Fig 7. 

Therefore, we leave this out in the revised version as long as a discission is made that we need 
to include this figure. 



 

L238: As Greenland is different and possibly more complicated it would be nice the see an ROI in 
Greenland. 

We applied the CP analysis for the compete LRM zone in Greenland as well as for the ROI in 
North Greenland, which was used in figure 14. However, as expected the Greenland results 
(see below) of the CP error show very similar results as Figures 8 and 9 as we selected 
representative areas in Antarctica for the CP analysis over flat and complex topography. We 
followed your suggestion and placed the following figures in the appendix.  

 
Figure 1: CP error analysis a region in North Greenland 

 
Figure 2: CP analysis fort the LRM zone in Greenland 

F7: thank you for this very convincing figure. How does this look with respect to slope? 

Thanks for this suggestion. We have to think about how this can be accomplished to be 
meaningful. When we plot with respect to slope the influence of attenuation is dominating and 



a any slope dependency cannot be resolved. However, we think that a sloped surface will 
slightly widen the leading edge. Our suggestion is to select a couple of attenuation rates and 
plot the difference to the reference with respect to slope for each of the attenuation rates as 
shown below in Figure 3. As supposed the effect of slope is only marginal (a slight positive 
trend is observed for TFMRA at low attenuation rates). We don’t think that this Figures needs 
to be included in the manuscript but if needed we could add it to the Appendix. 

 

Figure 3 Effect of slope for selected attenuation rates shown for TFMRA and AWI-ICENet1 retracker. 

 

L265: Roemer is a better solution however the LEPTA relocation seems to improve even further; how 
does this affect the results? 

This is a good question. However, it is not within the scope of this paper to compare different 
slope correction as we focus on the improved retracking methodology. As we apply the same 
slope correction to all of the different retracked geolocated elevation points we avoid any 
influence of slope correction at least in the intra mission analysis. For the comparison to 
ICESat-2 we agree that the LEPTA slope correction might improve the product even more but 
this is out of the scope if this paper. We will add a sentence to mention this additional option to 
further improve the elevation change product. 

In the revised version we added a reference to LEPTA and the following sentence: 

“Li (2022) developed the LEPTA method, an improved version of the relocation slope 
correction which includes points in the underlying DEM that contribute to the rise of the 
leading edge. Their results show an improved cross point error between CryoSat-2 and ICESat-
2 compared to the method of Roemer (2007). However, as we only consider intra-mission cross 
point errors and apply the same slope correction to all retracker solutions the slope correction 
method does not play any role in our CPE analysis. “   

 

L268: monthly crossovers are a very long time span for cross-overs on ice sheets please add a lower 
time constraining on the timing between orbital crossing evaluated. 



Thanks for this suggestion, but we don’t agree. The area covered with the LRM mode is the 
plateau of the Antarctic Ice sheet. Maximum elevation changes to be expected are less than +/-
1m/yr. This results at maximum in <0.08m elevation difference in a month. As the observed 
standard deviation is approx. 0.5m we think that uncertainties due to elevation change are not 
affecting the overall performance. Furthermore, if we only consider cross overs in < 10d we 
would considerably reduce the number of cross over points and reduce the spatial coverage 
even more.  

Exemplary, we run the CP error analysis with <31d, <10d and <5d conditions and found the 
following: 
 

<31d <10d <5d 
Median CP error (m) 0.003 0.01 0.01 
SD CP error (m) 0.45 0.46 0.46 
valid cross points 126491 62902 33173 
filtered cross points: 90 (0.07%) 46 (0.07%) 27 (0.08%) 

Based on this evaluation we will stick with the old approach as it gives a better spatial 
coverage and thus also considers areas at lower latitudes. 

L270: how many fall within this outlier filtering (maybe in %) 

Usually less than 0.1%. Please see table above. Outlier removal is also dependent on the 
chosen retracker.  

F8-F10: The ESA ICE2 seems as an outlier compared to the others, suggest removing this from the 
plots to see the specific difference in the others. 

Thanks for this suggestion but as we consider all four retracker in the paper we would like to 
stick with the figures. We also show ESA ICE2 in all the remaining figures and tables and don’t 
want to remove this comparison, as we think it is important to show how large the effect of 
retracker can be for higher level products. 

L423: “…focus on the time from January 2019 to December 2021…” 

Thanks for spotting this. Will have changed it in the revised version. 

F20: Is the trackiness due to errors in the CS2 or ICESat-2 data? 

The plot shows the standard deviation of the h anomaly for ICESat-2 only. With the 
reprocessing the figure was updated and show less trackiness. 

L472: Guess this is ATL15 this should be mentioned. 

No this is not the case. As mentioned in the text we apply the same dhdt processing to the 
ATL06.006 point cloud data product as we do for the Level 2 relocated and retracked CryoSat-2 
point cloud to avoid differences in the processing and also to be able to generate the SD 
anomaly analysis, which is based on monthly anomalies. ATL15 is based on quarterly and not 
monthly products and only provides trends of elevation change over different time periods. For 
completeness and as comparison we added the volume change estimates based on the three 
years time period trend product given in ATL15.006 in table 4 and 5.  
 
 



Authors point-to-point responses Referee 'Comment on tc-2023-80', Anonymous Referee #2, 9 
Nov 2023 Please find the author’s responses in blue below the reviewer’s comments. 
 
Many thanks for the review, which helped to improve the quality of the manuscript. 
 

General comments:  

This paper presents a convolutional neural network (CNN) approach to measure and quantify surface 
elevation change in Greenland and the Antarctic ice sheets via satellite radar altimetry data. Through 
extensive analysis, the authors show that their proposed method displays improved performance and 
reduced uncertainty over traditional retrackers. 

The primary strengths of this paper are in the thoroughness of analysis of the performance of AWI-
ICENet1 and in comparisons to conventional retracking algorithms. Cross point error analysis is a 
good way of comparing the performance of each method for identifying the ice surface, as it does not 
rely on a ground truth (as is typical in supervised machine learning). 

Another strength of the paper is the construction of a synthetic dataset that, after training a CNN on it, 
performs at least as well as (if not better than) conventional methods. It is an impressive contribution in 
itself to be able to construct a synthetic dataset that is sufficiently close in distribution to the training 
and testing data such that a deep learning model can be adequately trained on the synthetic data 
alone. 

Specific comments: 

Despite the strengths and contributions, my main concern for this paper is that it does not situate itself 
within the context and literature of deep learning approaches applied on data from satellite or airborne 
sounding of ice sheets. To my knowledge, the majority of this work has involved using deep learning to 
track ice and bedrock layers beneath the ice surface, but these approaches still seem quite relevant, 
at least to briefly discuss. These are some such prior works: 

1. S. Dong, X. Tang, J. Guo, L. Fu, X. Chen, and B. Sun, “EisNet: Extracting bedrock and 
internal layers from radiostratigraphy of ice sheets with machine learning,” IEEE Trans. 
Geosci. Remote Sens., vol. 60, pp. 1–12, 2021.  

2. M. Liu-Schiaffini, G. Ng, C. Grima, and D. Young. “Ice thickness from deep learning and 
conditional random fields: application to ice-penetrating radar data with radiometric validation,” 
IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-14, 2022.  

3. M. H. Garcia, E. Donini, and F. Bovolo, “Automatic segmentation of ice shelves with deep 
learning,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2021, pp. 4833–4836.  

4. H. Kamangir, M. Rahnemoonfar, D. Dobbs, J. Paden, and G. Fox, “Deep hybrid wavelet 
network for ice boundary detection in radra imagery,” in Proc. IEEE Int. Geosci. Remote Sens. 
Symp. (IGARSS), Jul. 2018, pp. 3449–3452.  

5. R. Ghosh and F. Bovolo, “TransSounder: A hybrid TransUNet-TransFuse architectural 
framework for semantic segmentation of radar sounder data,” IEEE Trans. Geosci. Remote 
Sens., vol. 60, pp. 1–13, 2022.  

6. E. Donini, F. Bovolo, and L. Bruzzone, “A deep learning architecture for semantic 
segmentation of radar sounder data,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–14, 
2021.  

7. Y. Cai, S. Hu, S. Lang, Y. Guo, and J. Liu, “End-to-end classification network for ice sheet 
subsurface targets in radar imagery,” Appl. Sci., vol. 10, no. 7, p. 2501, Apr. 2020.  

 

https://editor.copernicus.org/#RC1


The authors discuss some prior machine learning methods applied to the cryospheric sciences, but 
this discussion only includes one deep learning approach (Fayad et al. (2021)). I would recommend 
that the authors include a brief discussion of what distinguishes Fayad et al. (2021)’s setting/model 
from the current paper. I would also recommend the authors incorporate an additional discussion of 
the above (and related) references on page 3, or where relevant. 

Thank you for this comprehensive list of additional references. We inserted them in the 
introduction as ML methods used in radar stratigraphy as most of them are dealing with 
identifying bed rock and/or internal layers or are used for classification of different ice regimes 
in radar images. We also added a brief discussion on the differences of our approach and the 
one of Fayad et.al. and tried to make clear how our approach is different to Fayad. 

We inserted at page 3 the following paragraph by introducing mentioned references: 

“In recent years Machine learning has been applied to various kind of image data in polar 
areas. E.g. Loebel et al. (2022, 2023) monitored calving front motion at sub-seasonal resolution 
for 23 Greenlandic outlet glaciers using a U-Net deep learning ap-plication (Ronneberger et al., 
2015) on multi-spectral Landsat-8 imagery data. Baumhoer et al. (2019) extracted 
automaticallyAntarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery by using U-net 
deep Learning to create a dense time series of the Antarctic coastline to assess calving front 
change. Mohajerani et al. (2021) used fully-convolutional neural network to auto-matic 
delineate glacier grounding lines in differential interferometric synthetic-aperture radar data. 
They applied their approach to more than 20000 interferograms along the Getz Ice Shelf, in 
West Antarctica and demonstrate that grounding zones are one order of magnitude wider than 
expected. Beside satellite imagery airborne or ground based radar images of Ice-Penetrating 
Radar systems has been extensively studied and new insights could be achieved through 
application of machine learning ap-proaches in recent years. Liu-Schiaffini et al. (2022) 
propose a deep learning model based on convolutional neural networks and continuous 
conditional random fields (CCRFs) to automate ice bed identification. They deployed their 
approach to high-capability radar sounder (HiCARS) radargrams and were able to capture the 
global ice bed geometry as well as identifying fine-grained basal details even in areas with 
complex and rough ice bed conditions. Kamangir et al. (2018) presented a deep hybrid wavelet 
network for detecting ice surface and bottom boundaries, compared it with other edge 
detection approaches by using the NASA Operation IceBridge Mission data set . Dong et al. 
(2022) designed a Neural Network Fusion, called EisNet to extract next to the Bedrock also 
Internal Layers from Radiostratigraphy data. Eisnet composes of three coupled deep neural 
networks which are based on U-net architecture (Ronneberger et al., 2015). Other application of 
Machine learning approaches deal with the segmentation of different structures in radargrams. 
E.g. García et al. (2021) developed an automatic analysis technique based on W-Net (Xia and 
Kulis, 2017), a fully convolutional autoencoder to distinguish floating ice over ice shelves from 
grounded ice in coastal areas in radargrams recorded with the Multichannel Coherent Radar 
Depth Sounder MCoRDS2. Another segmentation scheme to segment Radargrams into 
englacial layers, bedrock, basal units, and noise-limited regions such as the echo-free zone 
(EFZ) is based on a U-Net with attention gates and the Atrous Spatial Pyramid Pooling (ASPP) 
module is proposed by Donini et al. (2022). Their focus is the identification and mapping of 
basal layer and basal units and the network was successfully applied to two datasets acquired 
in North Greenland and West Antarctica using the MCoRDS3 data set. A very similar approach 
was developed by (Cai et al., 2020) using bilateral filtering to reduce noise and a deep residual 
learning (He et al., 2016) as well as the ASPP module to classification free space, internal 
layers, bedrock, and noise (including EFZ region) and applied it to MCoRDS and MCoRDS2 
radar images acquired between 2009 and 2011 in Antarctica. Finally, Ghosh and Bovolo (2022) 
constructed the TransSounder a hybrid TransUNet-TransFuse architectural framework to 
systematically characterize the different subsurface targets and compared it to other state of 
the art framweorks by using a MCoRDS radar depth sounder dataset. All the above mentioned 
ML approaches are using images or two dimensional data sets as input and thus differ from 
the classical one dimensional echoes or waveforms detected by satellite altimetry. However, 
Machine learning has been applied in various other studies for waveform analysis ….“ 

 



Most of these prior approaches applying CNNs to identify ice and bedrock layers beneath the ice 
surface use 2D CNNs to capture spatial correlations in the along-track direction. However, to my 
understanding AWI-ICENet1 only performs 1D convolutions in the radar return at a specific waveform 
in time. Why was this design choice made? It seems likely that capturing spatial correlations could aid 
the prediction of a deep learning model, especially in regions where data is noisy and measurements 
are highly variable. Please add a discussion/comparison of AWI-ICENet1 to prior 2D CNNs methods in 
the paper. 

Thank you for raising this question. 

Our choice for a 1D CNN has several reasons. First, it is simple and fast and can directly be 
applied to level 1B waveform data without any preprocessing. Second, our focus is the 
individual waveform and not like in radar stratigraphy continuous layering or bedrock. Third, a 
2D representation of subsequent altimeter waveforms as a radargramm look much different to 
airborne soundings as the receiving range window is adjusting to topographic changes. This 
means that the position of the waveform within the window can suddenly jump. A 2D CNN 
would try to use spatial or alongtrack correlations and would possibly misinterpret such 
jumps. We agree that spatial correlations could help to handle noisy measurements and we 
could imagine that especially for coastal or ocean altimetry a 2D approach might be suitable as 
well, as sudden waveform jumps are not expected or could be reduced by a preprocessing 
which shifts the waveform to a constant range gate. However, over the ice sheet this not 
appropriate as we face large elevation differences of a couple of hundred meters along track. 
Lastly “our simple” 1D approach shows very good results and we don’t see a need to make it 
more complicated. In addition our 1D single parameter waveform based approach can be 
extended to a multi parameter approach to gather more information than just the retracking 
point from the waveform itself, as shown by Fayad et.al.  

We addressed your point in connection with a more detailed comparison to the study of Fayad 
et. al. by inserting the following text in the revised version: 

„However, the regression task to accurately estimate surface elevation has been barely 
addressed. Fayad et al. (2021) used DL for the detection of surface heights from space-borne 
laser altimeter data of the GEDI mission (Dubayah et al., 2020). Fayad et al. (2021) used two 
ConvNets, a one dimensional for the individual waveform and reshaping it into two-
dimensional representation to constrain biophysical parameters, such as canopy height and 
wood volume. Their results confirm, that ConvNets can be used to extract useful information 
from LiDAR waveforms and compare well with classical but complex and expensive random 
forest methodologies. Furthermore, Fayad et al. (2021) find that the 1D representation of the 
waveform produced slightly less accurate results than its 2D counterpart, both, for single and 
multi-parameter output (estimation of canopy height and wood volume at the same time). They 
argue, that the reason for this being a larger gradient around an information peak, such as a 
vegetation or ground return, is generally larger in the 2D representation of the waveform. As 
the data set contains peaks and the aim is to detect those peaks, the filters of the 2D-ConvNet 
model are better adapted to recognize signal content which are concentrated in small areas 
with high signal contrast, (Fayad et al., 2021).  
However, over ice sheets we only deal with one prominent return waveform, which is an 
integrated signal originating from a large footprint with a diameter of roughly 15 km including 
contributions from of the upper snow/firn layer up to a depth of less than 10m,. Therefore, 
signal gradients are not as large and single or multi peak waveform are usually only occurring 
in very complex terrain. Furthermore, the noise level for a single radar waveform is much 
higher than for a LiDAR waveform, which results in noise peaks on top of the gentle signal. In 
addition, our application developed for satellite radar altimetry, is also very contrasting to 
typical application of 2D DL approaches such as layer or feature detection, or classification 
within images (radargrams) recorded by radar depth sounders. Those systems can penetrate 
up to 4km of ice and thus are capable to provide detailed information of internal structures, 
bed rock as well as basal features within the recorded radargrams. Here 2D ConvNets are used 
to capture spatially correlated signals in the along-track direction. Since the receive range 



window of a satellite radar altimeter is adjusted to follow the terrain by the on-bord tracker, 
consecutive waveforms are not necessarily aligned and may jump within the radar range 
window, especially when the satellite samples changing undulating surfaces such as ice 
sheets. This can lead to erroneous results when using a 2D Convnet that captures spatially 
correlated signals. However, over the open ocean or in coastal altimetry applications, a 2D 
approach could be promising. Since neither peak detection, image classification nor spatial 
correlated layer detection is the objective of our approach, we decided that a 1D representation 
of the ConvNet is sufficient to accomplish our task of accurately determining or retrack the 
beginning of the leading edge of a single waveforms. 
 
As peak detection, image classification nor layer detection is the objective of our approach we 
decided that a 1D representation of the ConvNet should be sufficient to fulfill our task to 
retrack the beginning of the waveforms leading edge. We use single waveforms of CryoSat-2 
and represent them as sequential data to a 1D ConvNet that applies a series of processing 
layers (in particular  convolutions with learned kernels along the time dimension of the 
waveform) to automatically extract features and agglomerate information. The output of the 
network is the retracked range that corresponds to the snow/firn surface.”  

The authors motivate the use of a synthetic dataset by discussing how ground truth data cannot be 
obtained by using airborne or ground-borne sounders due to the different footprint sizes. While the 
answer may be clear to someone in the cryospheric community, some members of the machine 
learning community may ask why the ground truth cannot simply be set to be the output from a 
retracking algorithm that the CNN can simply learn to approximate (albeit potentially improving 
runtime). I would recommend that the authors briefly address this question in the introduction as well. 

Thanks for this advice. We briefly addressed this and tried to make clear that a radar satellite 
measurement is an integrated signal over a large area including an unknown and variable 
signal contribution from the subsurface. The topography in this area is dominating the 
waveform shape and the volume contribution changes the shape and especially the leading-
edge width as well. Thus, the ConvNet cannot simply provide a surface elevation when it is 
trained by point measurements as obtained by ground truth data like GNSS, airborne laser or 
satellite laser measurements.  

This text is added to the revised version: 

“In order to engage supervised machine learning for processing of the satellite radar altimeter 
waveforms, a large data set with known range is needed. In contrast to (Fayad et al., 2021) who 
trained their models on a subset of GEDI waveforms, where ground truth measurements 
existed, a ground-truth based learning approach cannot be achieved here. The area covered by 
airborne or ground-borne soundings of the ice surface using laser scanners or GNSS traverses 
are orders of magnitudes smaller than those of satellite measurements. Space borne laser 
altimetry as ICESat-2 to be used as test data set in a DL approach to improve radar derived 
elevation measurements is in our opinion also not applicable. The reasons for this are the very 
different footprints of the two systems. While the ICESat-2 laser points to areas of less than 
0.02 km^2, satellite radar altimeters illuminate large areas of up to 10 km2 , so that the two are 
not spatially assigned and cannot be directly compared with each other. Even more, the large 
scale topographic undulation and surface slope influence the waveform shape but also involve 
a slope correction in the post processing to reposition the radar elevation measurement to its 
point of closest approach. As this correction cannot be extracted from the waveform shape 
itself a direct comparison between laser or GNSS derived surface elevation and radar derived 
elevation as a gound truth for a DL approach is not possible” 

 

 

 



Can the authors also provide a brief description/comparisons of runtimes between the algorithms? 

Yes, we added a table in section 3.1 showing the runtimes of the different algorithms 

Technical corrections: 

There are several typos in the paper, and some of the language is unclear; please proofread the paper 
closely again. For instance, there are  

We have proofread the paper. 

two typos in line 144 

Thanks, we have changed this in the revised version. 

line 30 “esa” should be “ESA.”  

Thanks, we have changed this in the revised version. 

On line 270, there seems to be an extra $x$.  

Thanks, we have changed this in the revised version. 

In lines 504-505, it is unclear what is meant by “the nature of things.”  

We have change the sentence to: 

The reason that the correlations are lower for AWI-ICENet1 is that the seasonal h-anomalies are 
already strongly suppressed, resulting in a much lower correlation with backscatter or LEW 
and thus reducing the correction. 

The wording in line 93 should also be tweaked for grammar and combined with the previous sentence: 
“Reason is the very different footprint size of the two systems.” 

We have change the sentence to: 

The reason for this are the very different footprints of the two systems. While the ICESat-2 
laser points to areas of less than 0.02 km2 , satellite radar altimeters illuminate large areas of 
up to 10 km2 , so that the two are not spatially assigned and cannot be directly compared with 
each other. 

 

 
 


